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Abstrat

This works enompasses a broad review of the basi aspets of the Disrete Element

Method for its appliation to general granular material handling problems with speial

emphasis on the topis of partile-struture interation and the modelling of ohesive

materials. On the one hand, a speial ontat detetion algorithm has been developed

for the ase of spherial partiles representing the granular media in ontat with the

�nite elements that disretize the surfae of rigid strutures. The method, named Dou-

ble Hierarhy Method, improves the existing state of the art in the �eld by solving the

problems that non-smooth ontat regions and multi ontat situations present. This

topi is later extended to the ontat with deformable strutures by means of a oupled

DE-FE method. To do so, a speial proedure is desribed aiming to onsistently trans-

fer the ontat fores, whih are �rst alulated on the partiles, to the nodes of the FE

representing the solids or strutures. On the other hand, a model developed by Oñate

et al. for the modelling of ohesive materials with the DEM is numerially analysed to

draw some onlusions about its apabilities and limitations.

In parallel to the theoretial developments, one of the objetives of the thesis is to pro-

vide the industrial partner of the dotoral programme, CITECHSA, a omputer software

alled DEMPak (www.imne.om/dem/) that an apply the oupled DE-FE proedure

to real engineering projets. One of the remarkable appliations of the developments

in the framework of the thesis has been a projet with the ompany Weatherford Ltd.

involving the simulation of onrete-like material testing.

The thesis is framed within the �rst graduation (2012-13) of the Industrial Dotorate

programme of the Generalitat de Catalunya. The thesis proposal omes out from the

agreement between the ompany CITECHSA and the researh entre CIMNE from the

Polytehnial University of Catalonia (UPC).



Resum

Aquest treball ompèn una àmplia revisió dels aspetes bàsis del Mètode dels Ele-

ments Disrets (DEM) per a la seva apliaió genèria en problemes que involuren la

manipulaió i transport de material granular posant èmfasi en els temes de la interaió

partíula-estrutura i la simulaió de materials ohesius. Per una banda, s'ha desen-

volupat un algoritme espeialitzat en la deteió de ontates entre partíules esfèriques

que representen el medi granular i els elements �nits que onformen una malla de su-

perfíie en el modelatge d'estrutures rígides. El mètode, anomenat Double Hierarhy

Method, suposa una millora en l'estat de l'art existent en soluionar els problemes que

deriven del ontate en regions de transiió no suau i en asos amb múltiples ontates.

Aquest tema és posteriorment estès al ontate amb estrutures deformables per mitjà

de l'aoblament entre el DEM i el Mètode dels Elements Finits (FEM) el qual governa

la soluió de meània de sòlids en l'estrutura. Per a fer-ho, es desriu un proediment

pel qual les fores de ontate, que es alulen en les partíules, es transfereixen de forma

onsistent als nodes que formen part de l'estrutura o sòlid en qüestió. Per altra banda,

un model desenvolupat per Oñate et al. per a modelar materials ohesius mitjançant el

DEM és analitzat numèriament per tal d'extreure onlusions sobre les seves apaitats

i limitaions.

En paral·lel als desenvolupaments teòris, un dels objetius de la tesi és proveir al part-

ner industrial del programa dotoral, CITECHSA, d'un software anomenat DEMpak

(http://www.imne.om/dem/) que permeti apliar l'aoblament DEM-FEM en pro-

jetes d'enginyeria reals. Una de les apliaions remarables dels desenvolupaments en

el mar de la tesi ha estat un projete per l'empresa Weatherford Ltd. que involura la

simulaió de tests en provetes de materials imentosos tipus formigó.

Aquesta tesi dotoral s'emmara en la primera promoió (2012-13) del programa de

Dotorats Industrials de la Generalitat de Catalunya. La proposta de tesi prové de

l'aord entre l'empresa CITECHSA i el entre de reera CIMNE de la Universitat

Politènia de Catalunya (UPC).
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Chapter 1
Introdution

Truesdell and Noll in the introdution of The Non-Linear Field Theories of Mehanis

[129℄ state:

Whether the ontinuum approah is justi�ed, in any partiular ase, is a

matter, not for the philosophy or methodology of siene, but for the experi-

mental test. . .

The ones that agree on that statement may also agree that the same applies for the

disontinuum approah in whih the Disrete Element Method is framed on.

Before the introdution of the Disrete Element Method in the 70's, lot of e�ort has

been plaed in developing onstitutive models for the marosopi desription of parti-

le �ows. However, the ontinuum based methods fail to predit the speial rheology of

granular materials whih an rapidly hange from a solid-like behaviour in zones where

the deformation is small and rather homogeneous to a �uid-like behaviour with huge

variation and distortion that an be onentrated in narrow areas suh as shear bands.

Within the DEM this behaviour, whih is driven by the ollisional and fritional meh-

anisms of the material, an be simulated at the grain level where eah disrete element

orresponds to a physial partile. The quality of the results depends then on the au-

ray in the representation of the shape of the partiles and their interation.

The DEM is nothing else than Moleular Dynamis with rotational degrees of free-

dom and ontat mehanisms. In its �rst oneption, the method was designed for
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simulations of dynami systems of partiles where eah element is onsidered to be an

independent and non deformable entity whih interats with other partiles by the laws

of the ontat mehanis and moves following the Newton-Euler equations.

The simpliity of the method is in ontrast however, with the high omputation ost

whih, in general, has assoiated to it due to the large number of partiles needed in a

real simulation and the time sales that have to be resolved. Imagine a hooper disharge

problem whih may require the omputation of millions of partiles simulated during

tens of minutes when, at the same time, the phenomena that rules the problem lies in

reproduing the behaviour of individual partiles the interation of whih happens in

distanes several orders of magnitude smaller than their partile diameter. This implies

that the neessary time steps to be used in the simulation have to be smaller than the

harateristi ontat duration.

In this sense, the implementation of the method using massive parallelization is some-

thing of ruial importane. Also the use of simple geometries suh as spheres presents

a great di�erene to other more omplex geometries suh as polyhedra, NURBS, et. in

the detetion and haraterization of the ontats. That is why still today the use of

basi spheres is intensively used.

In many real appliations involving granular materials, the interation with strutures

and �uids are present. The employment of the FEM to simulate the strutures involved

in those industrial appliations an provide better understanding of the problem and,

therefore, ould play an important role in the proess of design optimization. To that

end an e�ient oupling of the method with a FEM-based solver for solids is of speial

interest.

Another �eld of interest of the appliation of the DEM is the simulation of material fra-

turing. The DEM as a disontinuum-based method has attrative features in ontrast

to ontinuum-based methods in problems where large deformations and frature are

involved. Many attemps have been done aiming to unify both the modelling of the me-

hanial behaviour of solid and partiulate materials, inluding the transition from solid

phase to partiulate phase. Nowadays however, the DEM still presents many drawbaks

and lak of reliability in the modelling of solids. Di�erently from other partile-based
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methods suh as MPM, PFEM or SPH, the DEM shall not be regarded as a disretiza-

tion method for the solution of PDE.

The interest in the Disrete Element Method has exponentially inreased sine the

publiation in 1979 of the �rst artile by Cundall and Strak [24℄ and is still a hot topi

nowadays. This an be seen in �g. 1.1 where the number of publiations related to

disrete element proedures from 1979 to 2016 are displayed. They were obtained from

Google Sholar with the following keywords in the title of the artile: 'Disrete Element

Method/Model', or 'Distint Element Method/Model', or 'Using a DEM' or 'A DEM'

or 'With the DEM' or 'DEM Simulation'. This does not inlude all the publiations

related to DEM and may introdue other non related artiles, however it gives a good

image of the tendeny of researh in the �eld.
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Figure 1.1: Number of publiations from 1979 to 2016 obtained from Google Sholar

with the following keywords in the title of the artile: 'Disrete Element Method/Model',

or 'Distint Element Method/Model', or 'Using a DEM' or 'A DEM' or 'With the DEM'

or 'DEM Simulation'.

There is a great interest in the appliation of this method to a wide range of industrial

problems.
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1.1 DE-FE ouplings

The term oupled DE-FE or ombined DE-FE Method for soil and solid mehanis

appliations appears in the literature with di�erent meanings and an be quite onfusing.

The most ommon ones are grouped here in 5 ategories along with an example �gure

(Fig. 1.2). Other ategories for DE-FE ouplings are for instane oupling with �uids,

thermal problems, et.

(a) Partile-struture interation: The two domains are alulated separately and

their ommuniation is through ontat models. This is the ategory in whih the

thesis is mainly foused on. It is developed in Setion 4.

(b) Two-sale models: These methods solve the problem at two di�erent sales.

The miro-maro transition is aomplished employing an overlapping zone to

provide a smooth transition between a DE model (miro) and a FE material

desription (maro). The oupling is ahieved by the imposition of kinemati

onstrains between the two domains. The original idea was presented by Xiao and

Belytshko [143℄ for Moleular Dynamis, Wellmann [136℄ applied it to granular

material while Rojek and Oñate [106℄ developed it for ohesive materials.

() Projetion tehniques: Coarse-graining, averaging and other projetion teh-

niques are used to derive ontinuum �elds out of disrete quantities. To do so,

often a referene mesh is required either for the alulation or simply for the rep-

resentation of the ontinuum results [64℄.

(d) Embedded DE on FE: This tehnique onsists on embedding (typially spher-

ial) partiles in the boundaries of FE models of solids and strutures in order

to detet and enfore the ontat [11℄. Reently, this tehnique has been applied

to multi-fraturing in ohesive materials [146℄. A FE-based method with failure

or rak propagation models is ombined with embedded partiles that assist the

detetion and haraterization of the ontat fores.

(e) FE disretization of disrete entities: This ategory involves methods that use

a FE disretization to alulate the deformation of the partiles and solve their

interation using a DEM-like tehnique [40℄. A partiular ase is the so alled

DEM-Blok method [69℄ whih onsists on a FE-based Method whih elements

are onneted through breakable spring-like bounds imitating the ohesive DE

models.
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(a) Partile-Struture (b) Two-sale. Taken from: Labra [63℄

() Projetion onto a FE

mesh

(d) Embedded partiles.

Taken from: Zárate and

Oñate [146℄

(e) Disretized DE. Taken

from: Gethin et al. [40℄

Figure 1.2: Examples of di�erent tehniques that ombine FE and DE methods

1.2 Objetives

This thesis has been developed in the framework of the �rst graduation of Dotorats

Industrials de la Generalitat de Catalunya (Industrial Dotorates of Catalonia). The

objetives de�ned for this work omprise an agreement between the researh line de-

termined by the researh entre CIMNE in the Polytehnial University of Catalonia

(UPC) and the business objetives of the soiety CITECHSA whih is interested in

the exploitation of a DEM-based software in its appliation to industrial engineering

problems. In this regard, the objetives involve researh, development of a ode and

eduational and dissemination ations.

On the one hand, the researh has to be foused in a deep revision of the state of the art

of the Disrete Element Method in order to analyse and selet the existing tehniques

that have to be adapted and implemented for the solution of the problems of interest
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whih are basially three:

• General appliation of DEM to granular material handling problems

• Partile-struture interation

• DE models for the simulation of ohesive materials

The researh has to be onduted from a general point of view determining the advan-

tages and drawbaks of the existing methods and proposing new developments that an

improve the state of the art. The theoretial ontributions will be ommuniated by

dissemination ations.

The theoretial researh in the above-mentioned topis have to aompanied by its im-

plementation into the open-soure ode DEMpak (www.imne.om/dem). The ode

will be developed with onerns on e�ieny and parallelism as it is devised to be em-

ployed in real appliation projets. To that end, several GUIs for spei� appliations

will be developed. This will be done forming part of a larger group of researhers that

ontribute to the development of the ode.

Finally, the developments will be applied in ongoing projets of the researh entre.

1.3 Organization of this work

The doument is strutured as follows:

After the introdution and the objetives, hapter two reviews the basi aspets of

the Disrete Element Method that will set the basis upon whih the developments in the

thesis are established. It inludes a revision of the most ommon ontat models and

integration methods. An assessment on performane, auray and stability is given to

help hoosing the most appropriate integration sheme. The treatment of lusters of

spheres for the representation of non-spherial partiles and the ontat detetion are

also disussed in detail.

Chapter three is dediated to the ontat detetion between spherial Disrete Ele-

ments and triangular or planar quadrilateral Finite Elements. The hapter starts with
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a omplete review of the state of the art and follows with a thorough desription of the

strategy adopted for the global and loal detetion of ontats. The idea of using an

intermediate fast intersetion test is introdued and later proved to be e�ient within

an appliation example. Regarding the loal resolution, the novel Double Hierarhy

Method for ontat with rigid boundaries is presented. The desription of the methods

is equipped with algorithm details, validation examples and limitations analysis.

The fourth hapter introdues the DE-FE oupling for the partile-struture intera-

tion problem. After an introdution to the solid mehanis formulation employed, the

oupled sheme is presented. The key point lies in the ommuniation of the ontat

fores, whih are alulated by the DE partiles, to the nodes of the FEs. The desribed

proedure proposes the distribution of the fores to all the FEs involved based on their

area of intersetion with the partiles. Several examples show that this strategy im-

proves the ommonly used diret interpolation approah for the ase of ontats with

deformable solids or strutures. The good funtioning of the oupling is assessed by

some tests with speial attention plaed on energy onservation.

The topi of DE modelling of ohesive materials suh as onrete or rok is presented

in hapter �ve. It begins with an overview of the state of the art of the methods

available for this purpose together with a study of their limitations and apabilities.

After, the model developed by Oñate, Santasusana et al. is desribed along with appli-

ation examples where the numerial simulations and the laboratory tests are ompared.

Chapter six is dediated to the implementation of the ode in the platform Kratos

onstituting the DEMpak software together with remarks on the e�ieny and paral-

lelitzation of the ode.

Finally, the last hapter omprises the onlusions and the outlook of the work.
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1.4 Related publiations and dissemination

1.4.1 Papers in sienti� journals

• E. Oñate, F. Zárate, J. Miquel, M. Santasusana et al. Computational Partile
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les.
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Chapter 2
The Disrete Element Method

The Disrete Element Method (DEM) was �rstly introdued by Cundall in 1971 [23℄

for the analysis of the frature mehanis problems. Afterwards, in 1979, Cundall and

Strak [24℄ applied it to granular dynamis. The DEM in its original oneption sim-

ulates the mehanial behaviour of a system formed by a set of partiles arbitrarily

disposed. The method onsiders the partiles to be disrete elements forming part of a

higher more omplex system. Eah disrete element has an independent movement; the

overall behaviour of the system is determined by the appliation of ontat laws in the

interation between the partiles.

There exist two main approahes, namely the soft and the hard partile approah. The

soft partile approah is a time-driven method where partiles are allowed to inter-

penetrate simulating small deformations due to ontat. The elasti, plasti and fri-

tional fores are alulated out of these deformations. The method allows aounting for

multiple simultaneous partile ontats. One the fores are alulated, the motion of

the partiles is earned from the appliation of the lassial Newton's law of motion whih

is usually integrated by means of an expliit sheme. The hard-partile approah, on

the other hand, is an event-driven method whih treats the ontats as instantaneous

and binary (no-multi ontat). It uses momentum onservation laws and restitution

oe�ients (inelasti or fritional ontats) to determine the states of partiles after a

ollision. These assumptions are only valid when the interation time between partiles

is small ompared to the time of free motion. A good review and omparison of the

methods an be found in [59℄. This thesis is developed using the soft-partile approah.
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The DEM, as a partile method, has been used in a very wide range of appliations.

An important deision to take is to selet whih is the relation between a disrete ele-

ment in the simulation and the physial partiles or media in the reality. On the one

hand, the one-to-one approah tries to assign a disrete element to every partile in

the domain. The method desribes all the ontat and other interation fores between

partiles with a model that only depends on the loal relations and does not require

�tting. On the other hand, a very ommon approah is to simulate granular matter

or other media using disrete elements that represent a higher amount of material than

just one partile. This tehnique, known as oarse-graining or up-saling [37℄, represents

a ompletely phenomenologial approah whih does require the �tting of parameters

out of bulk experiments. Both tehniques are used to simulate partiulate matter that

ranges from powder partiles (µm) to the simulation of rok bloks (m).

Common appliations of the Disrete Element Method are the simulation of granular

mater in soil mehanis. A soil an deform as a solid or �ow as a �uid depending on

its properties and the situation. The use of DEM omes naturally as it an handle

both behaviours of the soil and also aount for disontinuous and very large defor-

mations [49, 54, 136℄. The DEM adapts also perfetly to the simulation of granular

material handling in industrial proesses. Some examples of appliations are silo �ows

[59, 150℄, srew-onveyors [99, 100℄, vibrated beds [4, 21℄, ball mill proesses [56, 84℄, et.

Another appliation whih is of speial attention in this thesis is the partile-struture

interation problem. This ategory enompasses, among others, partile-tyre simulations

[49, 91℄, shot peening proesses [43, 90℄, impats with �exible barriers [67℄, soil-struture

interation [26, 136℄, et. Some examples of appliations are presented in setion 6.3.

In partile-�uid �ow modelling, the di�ulty relies on the partiulate phase rather than

�uid phase. Therefore, a oupled CFD-DEM approah [149℄ is attrative beause of its

apability to apture the partile physis. This omprehends a large family of applia-

tions whih inludes gas �uidization, pneumati onveying �ows, partile oating, blast

furnae, et. [150℄. Appliations in ivil and marine engineering are rok avalanhes into

water reservoirs [127℄, sediment and bed-load transportation in rivers and sea [16, 30, 77℄,

et. A omprehensive literature review on the appliations of DEM to the simulation of

partiulate systems proesses an be found in the work published by Zhu et al. [150℄.
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In reent years the DEM has also been objet of intense researh to the study of multi-

frature and failure of solids involving geomaterials (soils, roks, onrete), masonry and

erami materials, among others. Some key developments an be found in [29, 52, 65, 96℄.

In the ohesive models the ontat law an be seen as the formulation of the material

model on the mirosopi level. Cohesive bonds an be broken, whih allows to simulate

the fratures in the material and its propagation. The analysis of solid materials within

the DEM poses however, a number of di�ulties for adequately reproduing the orret

onstitutive behaviour of the material under linear (elasti) and non-linear onditions

(setion 5).

2.1 Basi steps for DEM

From a omputational point of view a basi DEM algorithm onsists of three basi steps:

Figure 2.1: Basi omputational sheme for the DEM

After an initialization step, the time loop starts. First, the neighbouring partiles for

every disrete element needs to be deteted (setion 2.2) as well as the ontat with

rigid boundaries inluded in the simulation domain (hapter 3). Afterwards, for every

ontating pair a the ontat model is applied (setion 2.5) to determine the fores and

torques that have to be added to the rest of ations to be onsidered on a partile.

Finally, given all the fores and the torques, the equations of motion are integrated and

the partile's new position is usually alulated by means of an expliit time marhing

sheme (setion 2.6). At this point, new ontats have to be deteted and thus, the loop

starts again. This sequene repeats over time until the simulation omes to an end.
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2.2 Contat detetion

Due to the method formulation, the de�nition of appropriate ontat laws is fundamen-

tal and a fast ontat detetion is something of signi�ant importane in DEM. Contat

status between individual objets, whih an be two DE partiles or a DE partile and

a boundary element (hapter 3), an be alulated from their relative position at the

previous time step and it is used for updating the ontat fores at the urrent step. The

relative ost of the ontat detetion over the total omputational ost is generally high

in DEM simulations. Therefore, the problem of how to reognize all ontats preisely

and e�iently has reeived onsiderable attention in the literature [86, 139℄.

Traditionally, the ontat detetion is split into two stages: Global Neighbour Searh

and Loal Contat Resolution. By the appliation of this split the omputational ost

an be redued from O(N2), in an all-to-all hek, to O(N · ln(N)).

Global Contat Searh

It onsists on loating the list of potential ontat objets for eah given target body.

There are two main basi shemes: the Grid/Cell based algorithms and the Tree based

ones, eah of them with numerous available versions in the literature.

Figure 2.2: Grid/Cell-based struture Figure 2.3: Tree-based struture

In the Grid based algorithms [87, 89, 140℄ a general retangular grid is de�ned dividing

in ells the entire domain (�gure 2.2). A simple bounding box (retangular or spheri) is

adopted to irumsribe the disrete elements (of any shape) and is used to hek in a ap-

proximate way whih are the ells that have intersetion with it. Those interseting ells,

store in their loal lists the partiles ontained in the bounding boxes. The potential

neighbours for every target partile are determined by seleting all the elements stored

in the di�erent ells where the bounding box of that target partile has been assigned to.
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In the Tree based algorithms [12, 38, 68, 138℄ eah element is represented by a point

p at oordinates Xp
. Starting from a entred one, it splits the domain into two sub-

domains. Points that have larger oordinate (X i ≥ X i
p
) are plaed in one sub-domain

while points with smaller oordinates (X i < X i
p
) in the other sub-domain. The method

proeeds for next points alternating every time the splitting dimension i and obtaining

a tree struture like the one shown in �gure 2.3. One the tree is onstruted, for every

partile the nearest neighbours is determined following the tree in upwind diretion.

Han et al [42℄ ompared the most ommon Global Neighbour Searh algorithms (ell-

based and tree-based) in simulations with spherial partiles. Numerial tests showed

better performane for the ell based algorithms (D-Cell [140℄ and NBS [87℄) over the

tree-based ones (ADT [12℄ and SDT [38℄), speially for large-sale problems. It should

be noted also that the e�ieny depends on the ell dimension and, in general, the size

distribution an a�et the performane. Han et al [42℄ suggest a ell size of three times

the average disrete objet size for 2D and �ve times for 3D problems. It is worth noting

that, using these or other e�ient algorithms, the ost of the Global Neighbour Searh

represents typially less than 5 perent of the total omputation while the total ost of

the searh an reah values over 75 perent [49℄, speially when the searh involves non-

spherial geometries sine it requires, in general, the resolution of a non-linear system

of equations (see the ase of superquadris [15, 136℄ or polyhedra [14, 32, 94℄). In this

sense, the fous should be plaed on the Loal Contat Resolution hek rather than on

optimizing the Global Neighbour Searh algorithms.

Loal Resolution Chek

The loal ontat detetion basially onsists in determining whih of the potential

neighbours found during the global searh algorithm onstitute an atual ontat with

the target partile and to determine their ontat harateristis (point of ontat, nor-

mal diretion, et.). The ase of spheres is trivial (�g. 2.4), ontat exists if the following

ondition is met:

‖Ci −Cj‖ < Ri +Rj (2.1)

and the normal and point of ontat an be easily determined as it will be detailed in

setion 2.4.
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Figure 2.4: Spherial partiles in ontat

The problem of ontat determination beomes omplex and time onsuming when

other geometries suh as superquadris, polyhedra or NURBS are used to represent

the partiles or boundaries. A way to improve the e�ieny is to take advantage of

the temporal oherene. Normally the duration of a ontat is enompassed by several

alulation time steps and therefore the partile positions will only hange a little bit.

In this regard, it seems wise to perform the ontat detetion after several time steps

instead of at every time step aiming to redue the omputational ost that it involves.

However, if the ontats are not determined when the partiles start to ollide, the in-

dentations will ahieve high values whih will lead to inaurate results and numerial

instabilities (setion 2.6.4).

A possible solution for this issue is the use of a tehnique known as Verlet neighbouring

lists [131, 136℄. It onsists on using enlarged bounding boxes in the global searh so that

more remote partiles are stored as well. This loal Verlet list need no update during

several time steps sine the partiles move only small distanes every step. This way it

an be assured that no ontats are missed along the simulation and the frequeny of

the searh is redued. This method is e�ient for ases with high dispersion of partiles.

In the framework of this dissertation, a basi ell-based algorithm [140℄ is hosen whih

has been parallelized using OMP. The geometries used for the partiles are only spheres

or lusters of spheres and thus the loal detetion is e�ient. The treatment of the

ontat with FE representing rigid or deformable boundaries is extensively disussed in

hapter 3.
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2.3 Equations of motion

In the basi soft partile DEM approah the translational and rotational motion of

partiles are de�ned by the standard equations for the dynamis of rigid bodies. For

the speial ase of spherial partiles, these equations an be written as:

m ü = F (2.2)

I ω̇ = T (2.3)

where u, u̇, ü are respetively the partile entroid displaement, its �rst and seond

derivative in a �xed oordinate system X, m is the partile mass, I the inertia tensor,

ω is the angular veloity and ω̇ the angular aeleration.

The fores F and the torques T to be onsidered at the equations of motion (eq. 2.2

and eq. 2.3) are omputed as the sum of:

(i) all fores F
ext

and torques T
ext

applied to the partile due to external loads.

(ii) all the ontat interations with neighbouring spheres and boundary �nite elements

F
ij
, j = 1, · · · , nc

, where i is the index of the element in onsideration and j the

neighbour index of the entities (partiles or �nite elements) being in ontat with

it.

(iii) all fores F
damp

and torques T
damp

resulting from external damping.

This an be expressed for every partile i as:

Fi = F
ext

i +

nc
∑

j=1

F
ij + F

damp

i (2.4)

Ti = T
ext

i +
nc
∑

j=1

r
ij
c × F

ij +T
damp

i (2.5)

where r
ij
c is the vetor onneting the entre of mass of the i-th partile with the ontat

point Pcij with the j-th partile (eq. 2.8). F
ij
and F

ji
satisfy (Fij = −F

ji). Fig. 2.5

shows ontat fores between two spherial partiles.
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The rotational movement equation (2.3) is a simpli�ed version of the Euler equations

oming from the fat that a sphere has onstant oe�ients for its three prinipal inertia

axes whih are independent of the frame. The omplete equations an be found in setion

2.7 where the ase of generi partile shapes is disussed.

2.4 Contat kinematis

The fores and torques that develop from a ontat event are derived from the ontat

kinematis at the point of ontat Pc
ij
. The loal referene frame in the ontat point

is de�ned by a normal n
ij
and a tangential t

ij
unit vetors as shown in �gure 2.5.

(a) Contat between two partiles (b) Contat fore deomposition

Figure 2.5: Kinematis of the ontat between two partiles

The normal is de�ned along the line onneting the entres of the two partiles and

direted outwards from partile i.

n
ij =

Cj −Ci

‖Cj −Ci‖
(2.6)

The indentation or inter-penetration is alulated as:

δn = Ri +Rj − (Cj −Ci) · nij
(2.7)

where Cj , C i are the entre of the partiles and Ri, Rj their respetive radius.

The vetors from the entre of partiles to the ontat point rij
c and rji

c are in general

dependent on the ontat model. they should take into aount the ontribution of eah
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partile to the equivalent sti�ness of the system. Eq. 2.8 desribes the simple ase of

two linear springs with di�erent Young's modulus set in serial:

rij
c =

(

Ri +
Ej

Ei + Ej
δn

)

n
ij

(2.8)

The position of the ontat point an then be determined from any of the partiles:

Pcij = Ci + rij
c = Cj + rji

c (2.9)

The veloity v
ij
at the ontat point is determined by eq. 2.10 taking into aount the

angular and translational veloities of the ontating partiles, as shown in �g. 2.5.

v
ij =

(

ωj × rji
c + vj

)

−
(

ωi × rij
c + vi

)

(2.10)

In ase of ontat with a boundary b, the veloity of the rigid (or deformable) struture

at the ontat point has to be determined. If �nite elements are used to disretize

the boundaries, typially the veloities an be interpolated from the nodal veloities by

means of the shape funtions Nk (see hapter 4). Equation 2.10 is then modi�ed to:

v
ib =

nb
∑

k=0

Nk(Pcib) · vk −
(

ωi × rij
c + vi

)

(2.11)

The veloity at the ontat point an be deomposed in the loal referene frame de�ned

at the ontat point as:

v
ij
n =

(

v
ij · nij

)

· nij
(2.12a)

v
ij
t = v

ij − v
ij
n (2.12b)

And thus, the de�nition of the tangential unit vetor beomes:

t
ij =

v
ij
t

∥

∥v
ij
t

∥

∥

(2.13)
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Now the ontat fore F
ij
between the two interating spheres i and j an be deom-

posed into its normal F
ij
n and tangential F

ij
t omponents (Fig. 2.5):

F
ij = F

ij
n + F

ij
t = Fnn

ij + Ftt
ij

(2.14)

The fores Fn, Ft are obtained using a ontat onstitutive model. Standard models in

the DEM are haraterized by the normal kn and tangential kt sti�ness, normal dn and

tangential dt loal damping oe�ients at the ontat interfae and Coulomb frition

oe�ient µ represented shematially in Fig. 2.6 for the ase of two disrete spherial

partiles.

Figure 2.6: DEM standard ontat rheology

Some of the most ommon models are detailed in the next setion 2.5. The models used

in a ombined DE-FE strategy are desribed in Chapter 4.

2.5 Contat models

The ontat between two partiles poses in general a omplex problem whih is highly

non-linear and dependent on the shape, material properties, relative movement of the

partiles, et. Theoretially, it is possible to alulate these fores diretly from the

deformation that the partiles experiene during the ontat [55℄. In the framework of

the DEM however, simpli�ed models are used whih depend on a few ontat parame-

ters suh as the partiles relative veloity, indentation, radius and material properties

suh as the Young's modulus and Poisson's ratio toghether with some parameters that

summarize the loal loss of energy during the ontats.
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The most ommon model is the so-alled linear spring-dashpot model (LS+D) proposed

by Cundall and Strak [24℄ whih has an elasti sti�ness devie and a dashpot whih in-

trodues visous (veloity-dependent) dissipation. This model, while being the simplest

one, happens to yield nie results as desribed in the work from Di Renzo and Di Maio

[28℄ for the ase of elasti ollisions and in the work of Thornton [125℄ for the ase of

inelasti ollisions. This model is desribed in setion 2.5.1.

In a seond level of omplexity, we �nd models that derive from the theory of Hertz-

Mindlin and Deresiewiz. Hertz [47℄ proposes that the relationship between the normal

fore and normal displaement is non-linear. Mindlin and Deresiewiz [82℄ proposed a

general tangential fore model where the fore-displaement relationship depends on the

whole loading history as well as on the instantaneous rate of hange of the normal and

tangential fore or displaement. This model was adapted to the DEM by Vu-Quo and

Zhang [132℄ and later by Di Renzo and Di Maio [28℄. This model is quite ompliated

and requires high omputational e�ort. Other simpli�ed models exist [28, 125, 130℄

whih onsider only the non-slip regime of the Mindlin theory [81℄. The model pre-

sented in setion 2.5.2 is the simpli�ed model by Thornton et al. [125℄, labeled HM+D.

Other models exist in literature whih introdue plasti energy dissipation in a non-

visous manner. This inludes the semi-lathed spring fore-displaement models of

Walton and Braun [133℄ whih uses, for the normal diretion, di�erent spring sti�nesses

for loading and unloading. Similarly, Thornton [123℄ introdued a model in whih the

evolution of the ontat pressure an be approximated by an elasti stage up to some

limit followed by a plasti stage.

Unless the ontrary is spei�ed, the HM+D ontat law will be used in examples of the

thesis. In general, the riterion suggested here is to employ this model with the real

material parameters whenever the physis of the ontat have in�uene in the simulation

results. In other ases, where the details of the ontats are not relevant, both linear and

Hertzian ontat laws an be used as a mere penalty tehnique being the sti�ness value a

trade-o� between simulation time and admissible interpenetration. The model presented

for the ohesive materials in hapter 5 is an extension of the linear law (LS+D).
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2.5.1 Linear ontat law (LS+D)

The model presented here orresponds to a modi�ation of the original model from

Cundall and Strak [24℄ in whih the damping fore is inluded in the way the ontat

rheology has been presented (�gure 2.6).

Normal fore

In the basi linear ontat law the normal ontat fore Fn is deomposed into the elasti

part Fne and the damping ontat fore Fnd:

Fn = Fne + Fnd (2.15)

The damping part is a visous fore whih models the loss of energy during a ontat.

It also serves as a numerial artifat that helps to derease osillations of the ontat

fores whih is useful when using an expliit time sheme.

Normal elasti fore

The elasti part of the normal ompressive ontat fore Fne is, in the basi model,

proportional to the normal sti�ness kn and to the indentation (or interpenetration) δn

(eq. 2.7) of the two partile surfaes, i.e.:

Fne = knδn (2.16)

Sine no ohesive fores are aounted in the basi model. eq. 2.16 holds only if δn > 0,,

otherwise Fne = 0. The ohesive ontat will be onsidered in Chapter 5.

Normal ontat damping

The ontat damping fore is assumed to be of visous type and given by:

Fnd = cn · δ̇n (2.17)

where δ̇n is the normal relative veloity of the entres of the two partiles in ontat,

de�ned by:

δ̇n = −(Ċj − Ċi) · nij
(2.18)
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The damping oe�ient cn is taken as a fration ξ of the ritial damping cc for the

system of two rigid bodies with masses mi and mj onneted by a spring of sti�ness kn

with:

cn = ξcc = 2ξ
√

meqkn (2.19)

with 0 < ξ ≤ 1 and meq is the equivalent mass of the ontat,

meq =
mimj

mi +mj
(2.20)

The fration ξ is related with the oe�ient of restitution en = −δ̇aftern /δ̇beforen , whih is

a frational value representing the ratio of speeds after and before an impat, through

the following expression (see [92℄):

ξ =
− ln en

√

π2 + ln2 en
(2.21)

Contat duration

The equation of motion desribing the ollision of partiles with the LS+D model in

the normal diretion is ahieved solving the di�erential equation resultant from the

appliation of equation 2.2 in a frame entred at the point of ontat:

meq δ̈n = −(knδn + cnδ̇n) (2.22)

Eq. 2.22 an be rewritten as [92℄:

δ̈n + 2Ψ(δ̇n) + Ω2
0 δn = 0 (2.23)

Where Ω0 =
√

kn/meq is the frequeny of the undamped harmoni osillator and

Ψ = ξΩ0 = cn/(2meq) is the part aounting for the energy dissipation.

The solution of the eq. 2.22 for the initial onditions δn = 0 and δ̇n = v0 and for the

sub-ritial damped ase

1

(Ω2
0 −Ψ2 > 0 or ξ < 1) reads:

δn(t) = (v0/Ω) e
−Ψt sin (Ωt) with Ω =

√

Ω2
0 −Ψ2

(2.24)

1

The ases of ritial and super-ritial damping yield to other solutions whih an be found in [121℄
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And the relative normal veloity of the spheres:

δ̇n(t) = (v0/Ω) e
−Ψt (−Ψ sin (Ωt) + Ω cos (Ωt)) (2.25)

Now the ontat duration an be determined from the ondition δn(tc) = 0, whih

ombined with eq. 2.24 gives:

tc = π/Ω (2.26)

Note that the ontat duration does not depend on the initial approahing veloity δ̇n(t)

whih is obviously wrong as the formulation is not derived from the theory of elastiity

[55℄ (see setion 4.4 for more details).

The oe�ient of restitution an be rewritten as:

en =
−δ̇n(tc)

δ̇n(0)
= e−πΨ/Ω

(2.27)

The inverse relationship allows the determination of the parameter cn of the model from

the restitution oe�ient en, with the intermediate alulation of Ψ:

Ψ =
− ln en

√

π2 + ln2 en
Ω0 (2.28)

Finally, the maximum indentation an be obtained from the ondition δ̇n(t) = 0:

δmax = (v0/Ω0)e
−Ψ

Ω
arctan (Ω/Ψ)

(2.29)

Note on tensional fores

It has been appointed by di�erent authors [92, 111, 125℄ that this simple model presents

unrealisti tension fore when the partiles are separating if the damping fore is large

enough (Fig. 2.7). Normally in the implementation of the odes the normal fore

is onstrained to be exlusively positive, i.e Fn ≥ 0 always, as no trations our in

fritional ohesion-less ontats. In this situation the de�nition of the ontat duration

should be modi�ed as it has been derived by Shwager and Pöshel [111℄.
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Figure 2.7: The di�erent stages of a normal ollision of spheres with a visous damped

model. Taken from: Fig. 1 in Shwager and Pöshel [111℄

The determination of the damping oe�ients and the maximum indentation vary a-

ordingly. It is not possible to derive an expliit expression for the damping oe�ient

cn in funtion of the restitution oe�ient en. Fitting urves are proposed in [125℄.

Tangential fritional ontat

In the original model from Cundall and Strak [24℄ the relationship between the elasti

shear fore Ft and the relative tangential displaement ∆s is de�ned through a regular-

ized Coulomb model. The update of the tangential fore at time step n+ 1 reads:

F n+1
t = min

(

µFn, F
n
t + kt∆sn+1

)

(2.30)

Several authors (inluding the original paper) alulate the inrement of tangential

displaement at a given time step n, ∆sn, as
∥

∥v
ij,n
t

∥

∥ ·∆t. In our in-house ode imple-

mentation it is alulated from the integration of the relative displaement and rotation

in the loal frame:

∆sn =
∥

∥u
ij · tij

∥

∥

(2.31a)

u
ij =

(

Θj × rji
c + uj

)

−
(

Θi × rij
c + ui

)

(2.31b)

In the original paper [24℄ the damping is inluded only during the non-sliding phase

(Ft ≤ µFn) and it is applied afterwards as an extra fore whih opposes the relative

veloity. The magnitude of the damping fore is evaluated as ct ·
∥

∥v
ij
t

∥

∥

where ct the

tangential damping oe�ient. In other authors' works and also in our ode implemen-

tation it is hosen to inlude the dissipation in the hek for sliding. In ase of sliding
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(Ft = µFn), extra deision on how to distribute the resultant tangential fore in elasti

and dissipative part have to be taken. This will not be disussed here. Eq. 2.30 modi�es

as:

F
trial

t = F
n
t + kt∆sn+1

t
ij + ctv

ij,n+1
t (2.32a)

F
n+1
t = min

(

µFn,
∥

∥F
trial

t

∥

∥

) F
trial

t

‖Ftrial

t ‖ (2.32b)

The previous time step fores are transferred from its previous loal oordinate frame

to the new loal ontat frame with a rotation of the fore vetor (setion 2.7.1).

Seletion of the sti�ness and damping parameters

The seletion of the normal sti�ness kn is, in the LS+D model, a design parameter. The

general rule of thumb is that the value of kn should be large enough to avoid exessive

partile inter-penetration but at the same time should be small enough to permit rea-

sonable simulation time steps (setion 2.6.4) [118℄.

Cundall and Strak [24℄ investigated several values for the relation κ = kt/kn in the

range [2/3, 1], obtained from the following expression:

κ =
2(1− ν)

2− ν
(2.33)

The values for the damping in the original paper [24℄ are seleted as a proportion β of

the respetive sti�nesses:

cn = βkn (2.34a)

ct = βkt (2.34b)

Normally, the seletion of β will be based on the desired restitution oe�ient through

eq. 2.19 and 2.21. Alternatively, Shäfer [113℄ suggests a value of kt equal to two-

sevenths of the normal sti�ness oe�ient and a damping ct as half of the normal

damping oe�ient. Thornton [124℄, in his turn, suggests a value of kn that yields the

same ontat duration as the one predited by the Hertzian theory (setion 2.5.2).
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2.5.2 Hertzian ontat law (HM+D)

As introdued in setion 2.5, there exist in literature several ontat laws under the

framework the Hertzian ontat theory [47℄. The model hosen for this dissertation is

an adaptation of the one referred as HM+D model in the work by Thornton [125℄ due

to its balane between simpliity and auray in both elasti [28, 124℄ and inelasti

ollisions [125℄. This is a model based on the original one by Tsuji [130℄ in whih the

tangential spring is provided by the no slip theory of Mindlin [81℄.

The magnitude of the normal fore an be alulated as:

Fn =
2

3
knδn + cnδ̇n (2.35)

The tangential update has two branhes whether the normal fore is inreasing (load-

ing phase) or dereasing (unloading ase). For the loading phase the tangential fore

is inreased as usual due to the tangential displaement (Eq. 2.36a). In the unloading

phase, however (Eq. 2.36b), the tangential fore must be redued (even with no tangen-

tial displaement) due to the redution in the ontat area. The interpretation of this

is that the previous tangential fore an not longer be supported [125℄.

F n+1
te = F n

te + kn+1
t ∆sn+1

for ∆Fn ≥ 0 (2.36a)

F n+1
te = F n

te

(

kn+1
t

kn
t

+ kn+1
t

)

∆sn+1
for ∆Fn < 0 (2.36b)

Finally, the hek for sliding is performed restriting the maximum tangential fore to

the Coulomb's frition limit:

F trial

t = F n+1
te + ctv

ij
t (2.37a)

F n+1
t = F trial

t if F n+1
t < µFn (2.37b)

F n+1
t = µFn if F n+1

t ≥ µFn (2.37)

The sti�ness parameters were desribed by Tsuji [130℄ following from the Hertz theory

[47℄ and the works of Mindlin and Deresiewiz [82℄:
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kn = 2E∗√Reqδn (2.38a)

kt = 8G∗√Reqδn (2.38b)

The same for the damping parameters:

cn = 2ξ
√

meqkn (2.39a)

ct = 2ξ
√

meqkt (2.39b)

The expressions presented here (eq. 2.38 and 2.39) are a generalization to the ase of

two spheres i and j olliding with di�erent values of R, E, ν and m. This generalization

inludes the ase of a sphere i olliding with a �xed wall j whih will be disussed in

setion 2.5.3.

Req = RiRj/(Ri +Rj) (2.40a)

meq = mimj/(mi +mj) (2.40b)

E∗
eq =

(

(1− ν2
i )/Ei + (1− ν2

j )/Ej

)−1
(2.40)

G∗
eq = ((2− νi)/Gi + (2− νj)/Gj)

−1
(2.40d)

Although the seletion of the sti�ness has here a physial meaning, it is ommon pratie

however, to diminish its value to inrease the alulation speed in simulations where

the orret ontat duration and rebound angles are not of apital importane. The

derivation of the fore-displaement relationship and the ollision time by the Hertzian

theory are desribed in the Appendix A.

2.5.3 Contat with rigid boundaries

Rigid boundaries are ommonly introdued in a DE simulation to model the interation

of partiles with mehanial omponents that an be either �xed or have an imposed

rigid body motion. Although they are normally disretized with a FE mesh for ontat

detetion purposes (setion 3.1), they are not alulated by means of a FE proedure.

The rheology of a partile i ontating a FE j is presented in �gure 2.8.
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Figure 2.8: DE-FE standard ontat rheology

Same as for DE/DE ontat, Hertzian ontat law is preferred to model the ontats

or impats in a physial basis. Alternatively the linear ontat law an still be used

as basi penalty method. The adaptation of the presented Hertzian ontat law to the

ase of rigid boundaries is straightforward, it simply requires the partiularization of the

equivalent ontat parameters summarized in 2.40 setting: Rj → ∞ and mj → ∞. The

normal sti�ness of the wall is left as an input parameter so that a ertain elastiity of

the wall an be modelled. Sine the tangential displaement of the wall will be in most

ases muh smaller than the partile's one, it is reommended to be set Gj → ∞ [130℄.

The equivalent values beome:

Req = Ri (2.41a)

meq = mi (2.41b)

E∗
eq =

(

(1− ν2
i )/Ei + (1− ν2

j )/Ej

)−1
(2.41)

G∗
eq = Gi/(2− νi) (2.41d)

The sti�ness and damping parameters are modi�ed aordingly inserting these equiva-

lent values in eq. 2.38 and eq. 2.39. The frition value to be employed in this ase is a

new parameter to be introdued, whih is harateristi of the ontat between the two

materials involved and might be di�erent from the partile-partile frition.

Additionally, speial ontat laws an be applied whih model other e�ets suh as a

spei� dynami response, wear, plastiity, thermal oupling, et. [1, 66, 104℄.
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2.5.4 Rolling frition

It should be noted that the use of spherial partiles to represent real materials may

lead to exessive rotation. To avoid this e�et the rolling resistane approah has been

used. This approah onsists in imposing a virtual resistive torque whih is proportional

to the normal ontat fore and opposites the rolling diretion. The rolling resistane

torque T
r
is de�ned as;

T
r = −ηrRr|Fn| ω

rel

|ωrel| (2.42)

where ηr is the rolling resistane oe�ient that depends on the material, Rr is the

smallest radius of the DEs in ontat and ωrel
the relative angular veloity of both DEs.

Note that Rr = Ri for the ase where partile i is in ontat with a wall (Rj → ∞).

An improvement to the lassial Rolling Resistane Model A presented by Wensrih and

Katterfeld [137℄ has been developed by Irazábal [53℄ in order to avoid the instabilities

that appear when ωrel
is lose to 0.

2.6 Time integration

The equations of motion introdued in setion 2.3 an be numerially integrated to ob-

tain a solution of the problem. Traditionally there are two strategies to ahieve this: a)

An expliit sheme where the information at the urrent (or previous steps) su�es to

predit the solution at the next step. b) An impliit sheme, whih requires the solution

of a non-linear system of equations to ompute the state at the new time step. The

disadvantage of the expliit shemes is that they require the time step to be below a

ertain limit in order to be stable. Impliit shemes instead, are unonditionally stable

and thus, allow for larger time steps.

Some analysis on both impliit and expliit methods for disrete element simulations

showed that the seond one is generally preferable [97, 108℄. Impliit algorithms turn to

be not e�ient for DEM simulations beause of the nature of the dynamis of partiles

where relatively large motions are simulated ombined with very small harateristi

relative displaements between partiles during ontat events. In order to orretly

apture the dynamis of the ontat, the time resolution should be several times smaller
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than the duration of these ontats [108℄. Under this ondition, the expliit integration

yields su�ient auray and the time step is generally below its stability limits (see

setion 2.6.4). Following the same reasoning, low order expliit shemes are usually

preferred rather than higher order ones. Another important outome of the use of an

expliit integration is the easier parallelization of the ode and the avoidane of lin-

earization and employment of system solvers.

In other situations where the same ontats are kept for large simulation times, suh

as ohesive models for DE (hapter 5), the use impliit shemes an be advantageous.

Otherwise, the sti�ness matries have to be rebuild, in general, at eah iteration and

time step due to the formation and destrution of ontats. Amongst the most popular

impliit approahes in DEM is the Disontinuous Deformation Analysis [58℄.

2.6.1 Expliit integration shemes

In the present dissertation an expliit integration is used. Next, four di�erent one-step

integration algorithms with similar omputational ost are desribed and ompared in

this setion. The derivation of these methods omes from the appliation of the Taylor

series approximation to the seond order di�erential equations of motion (2.2) that

desribes the problem.

f(t+∆t) = f(t) +
f ′(t)

1!
∆t +

f ′′(t)

2!
∆t2 +

f ′′′(t)

3!
∆t3 + ... (2.43)

Forward Euler

The forward di�erene approximation of the �rst derivative of a funtion reads as:

f ′(t) =
1

∆t
(f(t+∆t)− f(t)) (2.44)

The terms an be rearranged to obtain an integration formula:

f(t+∆t) = f(t) + ∆tf ′(t) (2.45)

whih is applied to the integrate the aeleration and the veloity respetively:
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u̇
n+1 = u̇

n +∆t ün
(2.46)

u
n+1 = u

n +∆t u̇n
(2.47)

The trunation error of the Taylor expansion approximations are of O(N2). Hene, the

method is referred to as a �rst order approximation of the displaement and veloities.

Sympleti Euler

The Sympleti Euler is a modi�ation of the previous method whih uses a bakward

di�erene approximation for the derivative of the position:

f ′(t) =
1

∆t
(f(t)− f(t−∆t)) (2.48)

The algorithm is as follows:

u̇
n+1 = u̇

n +∆t ün
(2.49)

u
n+1 = u

n +∆t u̇n+1
(2.50)

This way a higher auray and order of onvergene an be ahieved as it is shown in

the numerial onvergene analysis performed in the following setion 2.6.3.

Taylor Sheme

The Taylor shemes are a family of integration methods whih make use of the Taylor

expansion (2.43) to approximate the next values of the variable of interest. If the series

are trunated at the �rst derivative for the veloity and at the seond derivative for the

position, the following integration rule is obtained:

u̇
n+1 = u̇

n +∆t ün
(2.51)

u
n+1 = u

n +∆t u̇n +
1

2
∆t2 ün

(2.52)

Whih is a �rst order integrator for the veloity and a seond order integrator for the

position.
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Veloity Verlet

This algorithm is sometimes simply alled Central Di�erenes [10, 86℄ and some other

times it is interpreted as the veloity form of the Verlet algorithm [108, 119℄. It also

oinides with the speial ase of the Newmark-beta method [93℄ with β = 0 and γ = 1/2.

The derivation presented here is the same as it is desribed by Belytshko in [10℄. The

entral di�erene formula is written as:

f ′(t) =
1

∆t
(f(t+ 1/2∆t)− f(t− 1/2∆t)) (2.53)

Applying it to the veloity at an intermediate position n+ 1/2:

u̇
n+1/2 =

1

∆t
(un+1 − u

n) (2.54)

and to the aeleration at the time step n:

ü
n =

1

∆t
(u̇n+1/2 − u̇

n−1/2) (2.55)

Inserting equation 2.54 and its ounterpart for the previous time step (v
n−1/2

) into

equation 2.55, the entral di�erene formula for the seond derivative of the displaement

is obtained:

ü
n =

1

∆t2
(un+1 − 2un + u

n−1) (2.56)

The algorithm follows from the rearrangement of equations 2.54 and 2.55

u̇
n+1/2 = u̇

n−1/2 +∆t ün
(2.57)

u
n+1 = u

n +∆t u̇n+1/2
(2.58)

Sine it may be neessary to have both veloity and position evaluated at every time

step of the disretization, a split in the alulation of u̇
n+1/2

an be performed.

u̇
n = u̇

n−1/2 + 1/2∆t ün
(2.59)

u̇
n+1/2 = u̇

n + 1/2∆t ün
(2.60)
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The implementation of the method is summarized in the following table:

Table 2.1: Implementation of Veloity Verlet algorithm

Initialization of the sheme. n = 0, ü
0 = F

0/m

while t < tf

Update step: n = n+ 1, t = t+∆t

First veloity update: u̇
n+1/2 = u̇

n + 1/2 ∆t ün

Position update: u
n+1 = u

n +∆t u̇n+1/2

Calulate fores F
n+1 = F

(

u
n+1, u̇n+1/2

)

Calulate aeleration: ü
n+1 = F

n+1/m

Seond veloity update: u̇
n+1 = u̇

n+1/2 + 1/2 ∆t ün+1

This is the seleted sheme for the examples in this dissertation.

2.6.2 Integration of the rotation

The partiular ase of spherial partiles simpli�es the equations for the rotation of

rigid bodies yielding to equation 2.3. Some authors [61, 95, 133℄ adapt a simple entral

di�erene sheme to integrate the equations:

ω̇n
i =

T
n
i

Ii
, (2.61)

ω
n+1/2
i = ω

n−1/2
i + ω̇n

i ∆t (2.62)

The vetor of inremental rotation ∆θn+1
is then alulated as:

∆θn+1
i = ω

n+1/2
i ∆t (2.63)

Knowledge of the inremental rotation su�es to update the tangential ontat fores.

If neessary, it is also possible to trak the rotational position of partiles, as detailed

in setion 2.7.1.



Time integration 35

2.6.3 Auray analysis

In this setion the error of the di�erent integration methods previously introdued is

addressed by means of auray and onvergene analysis. Three ases representative of

translational motion ourring in a DEM simulation are analysed here: free paraboli

motion, normal ontat between two spheres using a linear ontat law and normal

ontat between two spheres using a Hertzian ontat law. The desription of the test

examples is in �gure 2.9. A similar analysis has been performed by Samiei [108℄ for the

omparison of some expliit shemes against impliit integration.

The ase of rotational motion is analysed in setion 2.7.3 where a higher order sheme

is implemented for the ase of a generi rigid body whih an be also applied to the

spheres. It is shown that the integration of the rotation equation requires higher order

shemes for similar levels of auray as the one-step methods.

(a) Set-up paraboli motion (b) Set-up normal ontat

Figure 2.9: Examples for the auray and onvergene analysis on time integration

shemes



36 The Disrete Element Method

Paraboli motion analysis

An initial upwards veloity of 1.0m/s is set to a partile situated at the origin of o-

ordinates whih moves freely only under the e�et of gravity whih is set to −10m/s2

during 0.2 seonds.

A numerial integration of the problem is performed with the presented methods and

ompared against the analytial solution. The time step is hosen to be a tenth of the

total time so that the error of the methods an be easily observed.
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Figure 2.10: Vertial displaement of a sphere under gravity using 10 time steps

As expeted, the veloity is perfetly integrated for any of the analysed shemes sine the

aeleration is onstant over time (�gure 2.11). The position (�gure 2.10) is integrated

perfetly by the Taylor Sheme and Veloity Verlet whih are seond order shemes in

displaement.
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Figure 2.11: Veloity of a sphere under gravity using 10 time steps
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Figure 2.12: Convergene in veloity and displaement for di�erent integration shemes

Figure 2.12 shows that the Forward Euler and Sympleti Euler shemes have a linear

onvergene when integrating the position. The onvergene is omitted for other shemes

and for the veloity sine the algorithmi error is null.
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Normal ontat analysis with the LS+D model

Two spheres are set in spae with tangential ontat (no indentation) and without the

e�et of the gravity. One of the spheres approahes the other one with an initial veloity

in the diretion of the vetor joining the spheres' entres as depited in �gure 2.9(b).

The linear ontat law introdued in setion 2.5.1 is applied.

The expression for the maximum indentation (eq. 2.29) for the non-damped ase (Ψ =

0) turns into:

δmax = v0

√

meq

kn
(2.64)

And the ontat duration (eq. 2.26):

tc = π

√

meq

kn
(2.65)

The simulation is arried out for the di�erent shemes with a time step orresponding

to a ontat resolution

2

(CR) of 10, i.e. the time step orresponds to a tenth of the

ontat duration. The parameters of the simulation are summarized in the following

Table 2.2:

Table 2.2: Parameters for the impat of two spheres with using LS+D

Contat law Linear Contat Law (setion 2.5.1)

Radius 0.01 m

Density 100 kg/m3

kn 520.83 kN/m

Restitution oe�. 1.0

V0 0.5 m/s

Contat time 4.17 · 10−3 s

CR 10

2

The onept of ontat resolution de�ned as CR = tc/∆t is disussed in setion 2.6.4.
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Figure 2.13: Indentation during the ollision of two spheres using LS+D with CR = 10
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Figure 2.14: Veloity during the ollision of two spheres using LS+D with CR = 10

Both Sympleti Euler and Veloity Verlet aurately approximate the indentation (Fig.

2.13). Regarding the veloity, the Verlet sheme is the one with superior auray over

the other shemes (Fig. 2.14).
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Figure 2.15: Convergene in veloity and displaement for the FE and SE shemes

The numerial results for the maximum indentation as well as the exit veloity of the

ontat have been taken as the measures to evaluate the error for di�erent time steps.

Both F.E. and Taylor shemes showed linear onvergene in displaement and veloity

(Fig. 2.15). On the other hand, S.E. and V.V. showed quadrati onvergene for the

displaement and veloities.

Normal ontat analysis with the HM+D model

Finally, the same test is arried out using a Hertzian ontat law (setion 2.5.2). The

derivation of the ontat time duration and other properties of the Hertzian ontat

are detailed in Appendix A. The simulation parameters are summarized in Table 2.3.

The di�erent shemes are tested with a CR = 10 and the results for the indentation

evolution and its time derivative are plotted in Fig. 2.16 and Fig. 2.17 respetively.
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Table 2.3: Parameters for the impat of two spheres using HM+D

Contat law Hertzian Contat Law (setion 2.5.2)

Radius 0.01 m

Density 100 kg/m3

Young's modulus 1 · 105 kN/m2

Poisson's ratio 0.2

Restitution oe�. 1.0

V0 0.5 m/s

Contat time 1.99 · 10−3 s

CR 10
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Figure 2.16: Indentation during the ollision of two spheres using HM+D with CR = 10

The same onlusions of the linear ase an be drawn for the Hertzian ontat: the

Sympleti Euler and Veloity Verlet aurately approximate the indentation (Fig. 2.16)

while the other shemes present some error. Regarding the veloity, the better sheme

is learly the Verlet sheme (Fig. 2.17).
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Figure 2.17: Veloity during the ollision of two spheres using LS+D with CR = 10

In terms of onvergene, the veloity presented even a higher order than quadrati for

the Verlet sheme. It shall be notied however, that the error of this variable for the

seleted time steps is too small to draw onlusions on the sheme onvergene.
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Figure 2.18: Convergene in veloity and displaement for di�erent integration shemes
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2.6.4 Stability analysis

There are many fators that an ause instabilities in a Disrete Element simulation.

The �rst basi requisite for the time step, in a DEM simulation, is to be stable in

terms of the integration sheme. Another signi�ant soure of instabilities is the lak of

auray in the determination of the formation of ontats. In this sense, quantities suh

as the veloity of the partiles and the searh frequeny play a great role in the overall

stability and are not su�iently studied in the literature. While most of the authors

merely perform a sheme stability analysis [98℄ for the determination of the time step,

a large safety fator is applied whih redues the estimated value. This reinfores the

idea of using a time step based on the onept of ontat resolution [59, 107℄ de�ned as

the number of steps used to resolve a ontat event, CR = tc/∆t.

Stability of the integration sheme

Expliit integration shemes present a limitation in the time step in order to be numer-

ially stable ∆t ≤ ∆tcr. Belytshko [10℄ shows that the ritial time step ∆tcr for a

entral di�erene method is determined by the highest natural frequeny of the system

ωmax as:

∆tcr =
2

ωmax
(2.66)

Exat alulation of the highest frequeny ωmax requires the solution of the eigenvalue

problem de�ned for the whole system of onneted rigid partiles. In an approximate

solution proedure, an eigenvalue problem an be de�ned separately for every rigid

partile using the linearized equations of motion. The maximum frequeny is estimated

as the largest of the natural frequenies of the mass-spring systems de�ned for all the

partiles with one translational and one rotational degree of freedom:

ωmax = max
i

ωi (2.67)

And the natural frequeny for eah mass-spring system (ontat) is de�ned as:

ωi =

√

k

mi
(2.68)

being k the spring sti�ness and mi the mass of partile i. Now, for the ase with no
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damping, it is possible to rewrite the ritial time step as:

∆tcr = min
i

2

√

mi

k
(2.69)

The e�etive time step is onsidered as a fration of the ritial time step:

∆t = β∆tcr (2.70)

The fration β ∈ [0, 1] has been studied by di�erent authors. O'Sullivan and Bray in

[98℄ reommend values lose to β = 0.17 for 3D simulation, and β = 0.3 for the 2D ase.

If damping exists, the ritial time inrement is modi�ed with the fration of the ritial

damping ξ orresponding to the highest frequeny ωmax in the following way [10℄:

∆tcr =
2

ωmax

(

√

1 + ξ2 − ξ
)

(2.71)

Further details are given in setion 4.73 where the ritial time step for a expliit �nite

element proedure is disussed.

Example of the sheme stability

An example is presented here to show the performane of the di�erent shemes for time

steps near the ritial one and smaller. A sphere of radius R = 4mm and density

2.000 kg/m osillates between two parallel plates whih are separated 7mm using a lin-

ear ontat law with sti�ness kn = 1N/m. The sphere presents an initial indentation

with the top plate of 1mm (�g. 2.19(a)). The example tries to simulate the instability

e�ets that an our loally in a system with dense partile pakings.

The linear mass-spring system has a theoretial frequeny

3

of ω =
√

2kn/m = 61.08rad/s

whih yields to a ritial time step ∆tcr = 0.03275 s. The results for the four shemes

are presented (�g. 2.19) using time steps: ∆t = 0.03275 s, ∆t = 0.00300 s and

∆t = 0.00010 s.

3

The 2 multiplying the sti�ness omes from the fat that this is not a single mass-spring system,

instead two plates are ontributing to the sti�ness of the system.
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The results show how the Veloity Verlet is the only sheme whih has an aeptable

performane in the limit of the ritial time step (�g. 2.19(b)) as it is a seond order

sheme. It was found that for a slightly larger time step the Veloity Verlet sheme

beomes also unstable as predited by the riterion in eq. 2.69. Sympleti Euler,

whih showed properties similar to a seond order sheme in terms of auray, does

not unstabilize but presents a wrong predition of the amplitude. As it an be seen in

�gure 2.19() the �rst order shemes are still unstable even for a time step whih is ten

times smaller than the ritial one, being Forward Euler the most unstable one. Finally,

in �gure 2.19(d) it is shown that all methods onverge to the analytial solution as the

time step diminishes.

(a) Setup of the example
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(b) Position evolution for ∆t = 0.03275

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time

−3

−2

−1

0

1

2

3

N
o
rm

a
li
z
e
d
p
o
si
ti
o
n

∆t = 0.003s

F.E.

T.S.

S.E.

V.V.

Analytical

() Position evolution for ∆t = 0.00300

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

−3

−2

−1

0

1

2

3

N
o
rm

a
li
z
e
d
p
o
si
ti
o
n

F.E.

T.S.

S.E.

V.V.

Analytical

(d) Position evolution for ∆t = 0.00010

Figure 2.19: Setup and results for the position of the sphere between the plates
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Stability due to lak of auray

The lak of auray an produe instabilities in a DEM simulation. The easiest way to

explain it is to imagine a partile travelling with a very large veloity towards another

partile or a wall; while the ritial time step was shown to be independent of the ve-

loity (eq. 2.71), a large veloity will imply inauray in the detetion of the ontat

and this translates into an indentation that an be unboundedly large and thus yielding

to an unrealisti inrease in the energy. This an also be interpreted as an insu�ient

resolution of the ontat.

An example of this e�et is found in the work by Ketterhagen et al. [59℄ where an analy-

sis of how the time step a�ets the mean stress tensor measurements in two-dimensional

granular shear �ow simulations is performed. For a time step small enough the simu-

lation results for the stress tensor (or any other variable) should be independent of the

time step size. The studies performed using a linear ontat model and several sti�ness

values showed that for a CR = 15 the error in the stress measurement was below 2.5%

while higher time steps yielded a sudden inrease in the error up to values above 10%.

These inauraies may introdue instabilities as it was shown by their results whih are

referened here in Fig. 2.20.

Figure 2.20: Stress measurement error in shear �ow simulations. Taken from: Fig. 4 in

Ketterhagen et al. [59℄

A ommonly aepted approah as an alternative to the ritial time step riterion

(setion 2.6.4) is to selet the time step of the simulation in funtion of the harater-

isti duration of the ontats, i.e, by means of the ontat resolution. No agreement is
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found when addressing a orret value for the CR, several authors reommend values

around CR = 50 whih is quite onservative (See [17, 118, 122, 133℄), Keterhagen et al.

reommends a ontat resolution of CR = 33 while others like Dury [31℄ use larger time

steps: CR = 15. O'Sullivan [98℄ determines values of CR in the range [6 − 10] using a

entral di�erenes sheme with regular mono-disperse (same radius) meshes.

Summarizing, there is not a unique solution for the problem of seleting a suitable time

step. It depends on many fators suh as the mesh, the integration sheme, the type of

simulation, the material parameters, the ontat law, et. Our suggestion is to estimate

a harateristi ontat time of the problem and then selet a time step based on the

CR riterion in the range [10− 50] depending on the onditions of the problem and the

auray desired. This will be in general muh lower than the ritial time step.

2.6.5 Computational ost

From the auray and stability analysis it is lear that Veloity Verlet and Sympleti

Euler are muh superior than the Forward Euler and Taylor Sheme, being Veloity

Verlet the best one among these four one-step shemes. The �nal aspet to take into

onsideration is the omputational ost of the method. Simulations in real appliations

involve millions of partiles and an also omprehend millions of time evaluations.

The example desribed in setion 6.2.2 is used here to alulate 1.000 time steps. It

inludes approximately 30.000 spheres ontating among them and also with around

2.500 rigid �nite elements. The test has been run in a personal omputer with an Intel

Core i7 proessor of 4 Gb RAM and 2.93 GHz.

Table 2.4: Calulation times in serial for the di�erent integration shemes.

Sheme F. Euler Taylor S. Euler V. Verlet

Time (s) 169.61 170.04 169.64 174.28

The results showed similar omputational times for the four shemes. Veloity Verlet

performed 2.7% slowlier whih is insigni�ant onsidering the advantages found in terms

of auray and stability in the integration of veloities. Obviously, it will vary in every

omputer but in general lines we determine that it is worth to employ a Veloity Verlet

sheme.
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2.7 Partile shape

In granular matter, the e�ets of the partile geometry are ruial in the behaviour of

the partiles as a bulk or as individuals [73℄. Often, the phenomenologial approah is

onsidered and the granular media are modelled with spheres as it is the heapest and

most e�ient option for simulating a large amount of partiles [95℄. Alternatively, if we

want a method whih is purely based on ontat and other interation fores, the real

geometry of the partiles have to be well represented.

Among the most ommon methods there is the use superquadris, whih permits a

wide range of symmetri onvex shapes [136℄, the Granular Element Method [3℄, whih

uses NURBS to represent the partiles and, �nally, the use of lusters or agglomeration

of spheres [39℄. The last one is hosen in this work sine it provides great balane

between shape representation auray

4

and e�ieny in terms of omputational ost.

Furthermore, it is the most versatile method in terms of partile shape and an naturally

inlude angularities. The ontat fores and torques are evaluated as usual on every

sphere through eq. 2.4 and eq. 2.5. The ontribution from every sphere is then gathered

and translated to the entre of gravity of the rigid body altogether with the additional

torque yielding from the appliation of the this fore from the entre of every partile i

to the entre of the luster xcm through the distane vetor r
p
i = Ci − xcm.

F =

np
∑

i=1

Fi (2.72a)

T =

np
∑

i=1

Ti +

np
∑

i=1

r
p
i × Fi (2.72b)

4

The use of sphere luster an introdue arti�ial frition due to the irregularities in the surfae

meshed by spheres. This problem is disussed in [48℄.
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Figure 2.21: Disretization of a rigid body using a luster approah with spheres on the

surfae or overlapping in the interior

One the total fore F and torque T of the rigid body is obtained, the lassial Newton's

seond law for the translation and the Euler rotation equations have to be solved in

order to obtain the full motion of the rigid body (setion 2.7.2). These equations an be

integrated in an expliit way, preferably with a seond or higher order sheme (setion

2.7.3).

2.7.1 Representation of the rotation

There are three ways whih are very popular to represent rotations in the DEM: the use

of Euler Angles, the use of rotation matries and the use of quaternions. A review of

the advantages and drawbaks of the methods an be found in [147℄.

The use of quaternions represents a lear advantage. It avoids the singularity problems

that Euler angles present, it is more ompat and it has less memory requirements than

storing rotation matries. Furthermore, the rotation operations are done in a more e�-

ient way than using rotation matries.

A rotation matrix R is a 3× 3 orthogonal matrix whih transforms a vetor or a tensor

from one oordinate system to another one as follows:

v
′ = Rv (2.73a)

A
′ = RART

(2.73b)
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Given a rotation of θ degrees over a unitary vetor u, the rotation matrix is onstruted

as follows:

R =











cos θ + u2
x (1− cos θ) uxuy (1− cos θ)− uz sin θ uxuz (1− cos θ) + uy sin θ

uyux (1− cos θ) + uz sin θ cos θ + u2
y (1− cos θ) uyuz (1− cos θ)− ux sin θ

uzux (1− cos θ)− uy sin θ uzuy (1− cos θ) + ux sin θ cos θ + u2
z (1− cos θ)











(2.74)

A quaternion an summarize the same information just using 4 salars. It is de�ned in

the omplex number system as:

q = q0 + q1i+ q2j + q3k (2.75)

or in a ompat form:

q = [q0, q] (2.76)

De�ning its onjugate as q∗ = [q0,−q], the norm of a quaternion an be expressed:

‖q‖ =
√
qq∗ (2.77)

and its inverse:

q−1 =
q∗

‖q‖ (2.78)

Now, given a rotation of θ degrees over a unitary vetor u, the resulting unit quaternion

reads:

q = cos(θ/2) + sin(θ/2)u (2.79)

And the onversion from quaternions to a rotation matrix is the following:

R =











1− 2(q22 + q23) 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q1q2 + 2q0q3 1− 2(q21 + q23) 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 1− 2(q21 + q22)











(2.80)
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By using unit quaternions the intermediate transformation to a rotation matrix an be

skipped and the rotation an be diretly applied to vetors and tensors. The spei�-

ation of unit quaternions is important in order to preserve lengths during rotational

transformations. The rotations are applied in the following way:

v
′ = qvq−1

(2.81a)

A
′ =
(

q
(

qAq−1
)T

q−1
)T

(2.81b)

To do so, the multipliation operation needs to be employed. Given two quaternions p

and q the multipliation yields a new quaternion t:

t = pq = [p0q0 − pq, p0q + q0p+ p× q] (2.82)

The vetor involved in a quaternion multipliation (eq. 2.81a) is treated as a quaternion

v = [0, v] with a null salar part. The tensor multipliation (eq. 2.81b) an be simply

done treating the tensor as an assembly of vetors that are being multiplied subsequently.

Note that the multipliation of quaternions is not ommutative sine it involves a ross

produt. A extended review on quaternion algebra an be found in [2℄.

2.7.2 Rigid body dynamis

In a rigid body the distane between two material points is onstant over time. Any

spatial movement undergone by a rigid body an be desribed with the displaement of

the entre of mass plus a rotation over some axis passing through the entre of gravity.

Figure 2.22: A generi rigid body



52 The Disrete Element Method

For sake of onveniene the spatial desription of the body will be used identifying the

position of every material point P in time t with its spatial position x(t) referred to

global inertial referene system X,Y,Z. In its turn, the supersript

′
as in x′(t) denotes

a quantity expressed with respet to the body �xed frame x′,y′, z′
. The temporal de-

pendene will be dropped in the following developments for larity.

The de�nition of the entre of mass of a body enlosed by the domain Ω supposing

onstant ρ density is:

xcm :=
1

m

∫

Ω

ρx dΩ (2.83)

De�ning r := x− xcm. The veloity and aeleration an be obtained:

v(x) = ẋcm + ω × r (2.84a)

a(x) = ẍcm + ω̇ × r + ω × (ω × r) (2.84b)

The linear and angular momentum are de�ned as:

L(t) : =

∫

Ω

ρv dΩ (2.85a)

H(t) : =

∫

Ω

r × ρv dΩ (2.85b)

and the balane expressions for linear and angular momentum read:

L̇(t) = F(t) (2.86a)

Ḣ(t) = T(t) (2.86b)

Now, the expression for the translational motion is obtained ombining equation 2.85a

and 2.84b onto the equation of balane of linear momentum 2.86a yielding the lassial

Newton's seond law of motion:

F = L̇ = m ẍcm, (2.87)
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Likewise, the expression for the rotational motion is ahieved plugging equation 2.85a

into equation 2.86a and evaluating the temporal derivative. The expression of the Euler

equations is found with the use of eq. 2.84b and eq. 2.84a onto the balane of linear

momentum (eq. 2.86a).

T = Ḣ = I · ω̇ + ω × I ·ω (2.88)

Where I is the inertia tensor whih is de�ned as:

I =

∫

Ω

ρ

(

(r · r)1− r ⊗ r

)

dΩ (2.89)

Note that the inertia tensor depends on the referene axis. Only in a body �xed

frame the tensor has onstant omponents. If we set this frame 2.88 in the so-alled

prinipal axis of inertia the tensor diagonalizes and the Euler equations an be expressed

omponent-wise as:

T ′
x = I ′x ω̇

′
x + (I ′z − I ′y)ω

′
zω

′
y

T ′
y = I ′y ω̇

′
y + (I ′x − I ′z)ω

′
xω

′
z

T ′
z = I ′z ω̇

′
z + (I ′y − I ′x)ω

′
yω

′
x

(2.90)

2.7.3 Time integration of rotational motion in rigid bodies

The integration of the rotation needs di�erent shemes than the ones presented for the

translational motion in setion 2.6.1 due to the higher omplexity of the equations.

The strategy desribed here is an adaptation of the sheme presented by Munjiza et

al. [88℄ and Wellman [136℄. The modi�ation onsists in the use of quaternions instead

of rotational matries in the integration sheme whih makes the alulations more

e�ient in terms of omputational ost and memory storage. The point of departure is

the balane of angular momentum in the following form:

T =
dH

dt
(2.91)

Munjiza et al. [88℄ introdued the idea that the hange in angular momentum an be

approximated by inrements due to the hange in the external torques at every time

step. Atually, this assumption adapts perfetly to the temporal disretization used in

DEM where the fores and torques are evaluated in disrete time steps.
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H
n+1 = H

n +∆tTn
(2.92)

This yields a onstant angular momentum throughout a time step. The angular velo-

ities an be approximated from the de�nition of the angular momentum expressed in

the following way:

H = I ·ω (2.93)

The key here is not to derive a onstant angular veloity from the relation ω = I
−1 ·H

but approximate it using a higher order sheme suh as a fourth-order Runge-Kutta.

Normally, the torques T and angular momentum H are expressed in global oordinates

while the inertia tensor I ′
is naturally stored in the loal body-�xed frame where it is

diagonal with onstant oe�ients. Applying the quaternion tensor rotation desribed

in equation 2.81b, the loal inertia tensor I ′
an be expressed in global oordinates, I.

Now, the angular veloity an be obtained from equation 2.93 as:

ω =

(

(

q
(

q I′ q−1
)T

q−1
)T
)−1

·H (2.94)

where q is the quaternion de�ning the transformation between loal and global oordi-

nates

5

. Instead of alulating it diretly, a four order Runge-Kutta sheme is applied

for the determination of an average angular veloity ω̄ during the time step:

ω1 := ωn
(2.95a)

ωk :=

(

(

qk
(

qk I
′ q−1

k

)T
q−1
k

)T
)−1

·Hn+1 k ∈ [2, 4] (2.95b)

ω̄ := 1/6 (ω1 + 2ω2 + 2ω3 + ω4) (2.95)

where the values of the transformation quaternions qk are:

5

It shall be noted that in the ase of spherial partile we an skip this transformation sine the

inertia is diagonal and onstant in every referene system.



Partile shape 55

q2 := q(ω1,∆t/2)qn (2.96a)

q3 := q(ω2,∆t/2)qn (2.96b)

q4 := q(ω3,∆t)qn (2.96)

One the average angular veloity during the time step ω̄ is obtained, the �nal update

predits the veloity at the new step as:

qn+1 = q(ω̄,∆t)qn (2.97a)

ωn+1 =

(

(

qn+1
(

qn+1
I
′ (qn+1)

−1
)T

(qn+1)
−1
)T
)−1

·Hn+1
(2.97b)

The quaternions expressed in the form q(a, b) (eq. 2.96a, 2.96b, 2.96 and 2.97a )

represent inremental rotations that are derived from the appliation of onstant angular

veloities a during a fration of time b. First, the orresponding rotation angles are

alulated:

∆θ(a, b) = b · a (2.98)

The unitary vetor de�ning the rotation is uθ = ∆θ (‖∆θ‖)−1
and its magnitude ‖∆θ‖.

With these two quantities the mapping ∆θ(a, b) → q(a, b) an be ahieved applying

equation 2.79.
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Diret expliit integration

Some odes perform a diret forward expliit integration of the equations of motion

whih is presented here. Eq. 2.99 is expressed in a diagonalized loal frame where the

′

supersript has been dropped for larity:

ωn+1
x = ωn

x +
∆t

Ix

(

T n
x − (Iz − Iy)ω

n
z ω

n
y

)

(2.99a)

ωn+1
y = ωn

y +
∆t

Iy

(

T n
y − (Ix − Iz)ω

n
x ω

n
z

)

(2.99b)

ωn+1
z = ωn

z +
∆t

Iz

(

T n
z − (Iy − Ix)ω

n
y ω

n
x

)

(2.99)

Rotation integration benhmark

In the works of Munjiza et al. [88℄ and Lillie [70℄ an example whih an be analytially

solved is run with the presented sheme using rotation matries instead of quaternions.

They showed that the sheme rapidly yields aurate results. Here the same example is

reprodued to hek the good implementation of the RK − 4 sheme using quaternions

and also to show its superiority against a diret expliit integration.

A ylinder of 1.5m height and 0.5m radius with a density of 1 kg/m3 is set to freely

rotate in the spae with an initial angular veloity of ω0 = [0, 1, 100] rad/s during 0.5

seonds. Sine the initial axis of rotation does not oinide with any of the prinipal

diretions e′
1, e

′
2, e

′
3, the resulting rotational motion presents the so alled torque free

preession whih is haraterized by a varying rotational veloity ω and inertia tensor

I (in global oordinates).

As �gures 2.24 and 2.25 show, the RK − 4 sheme is muh more aurate than the

diret integration. Even using a time step ten times smaller for the diret integration

than for the RK − 4, the last sheme performs better. Both methods proved to have

onvergene to the analytial solution when smaller time steps were used.
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Figure 2.23: Cylinder set-up
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Figure 2.24: Integration results for loal ωx
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We introdued the implementation of the RK − 4 with quaternions in order to have

a sheme that is muh more e�ient in omputational ost ompared to the original

one using rotation matries and it handles the storage of the rotations with less than

half of the memory. Therefore, and taking into aount the poor auray of the diret

approximation, we highly reommend the use of the RK − 4 method for the integration

of the rotations both for spherial and non-spherial partiles.

2.8 Mesh generation

Several industrial proesses in whih the partile �ow is simulated do not require an

initial mesh but an inlet and possibly an outlet. However, in a general ase, an initial

on�guration of partiles is required and a thus a generation tool has to be employed.

Normally, a heterogeneous mesh is desired with a spei� granulometry or size distribu-

tion. To that end several tehniques exist whih are based on di�erent priniples.

A �rst family of methods, known as Lily-pound methods [34, 41, 71℄ insert partiles

in random loations heking if intersetions our, if so, a new loation is determined.

On the other hand, the advaning front tehniques [5, 7, 36℄ olloate the partiles layer

by layer starting from the boundaries or the interior of the domain presenting a better

ontrol on the desired size distribution. Di�erent modi�ations exist whih attempt to

improve the paking of these tehniques like in [72℄.

In the framework of the thesis the GiD sphere mesher developed by Labra [63℄ has been

used for the generation of the sphere meshes. Its priniple is based on a �rst olloation

of partiles with a later rearrangement tehnique [8, 74℄ whih orrets the inlusions

generated being able to ahieve dense pakings. The redution of the porosity is solved

with the minimization of a distane funtion with every partile and its neighbours.

Some other meshing tehniques rely on a DEM pre-simulation to �ll the domain with

an inlet or pushing boundaries in a expanded domain where the partiles are initially

set. These are the tehniques used for the generation of meshes based on lusters of

spheres in the framework of this thesis.
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2.9 Basi DEM �owhart

Figure 2.26: Basi DEM �owhart





Chapter 3
The Double Hierarhy (H2

) Method

for DE-FE ontat detetion

This hapter presents a detailed desription of the ontat detetion between disrete

elements and �nite elements. First, the state of the art of the existing methods for

modelling the ontat with boundaries is reviewed as well as the spei� DE-FE ol-

lision detetion methods. Later, the Double Hierarhy Method [110℄, a novel method

developed for the interation with rigid strutures, is thoroughly desribed inluding

implementation details together with validation examples.

As it will be shown, the literature laks of a �exible method that omputes e�iently

the ontat between partiles and FE, allowing for multi-ontat problems and pro-

viding ontinuity of fores in non-smooth ontat regions. The objetive of this new

method is to provide a robust, versatile and e�ient proedure whih an takle the

above-mentioned problems and be implemented in any DEM ode allowing parallel

omputation.

The method presented here adapts perfetly to the ase of spherial partiles (inluding

lusters of spheres) ontating triangles or quadrilaterals belonging to the rigid bound-

aries inluded in a DEM simulation. The disussion on how to upgrade this method to

the ase of deformable strutures will be presented in hapter 4.
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3.1 State of the art

Several solutions have been reported for the inlusion of boundaries to the disrete

element method. Among the simplest ones is the glued-sphere approah [60℄, whih

approximates any omplex geometry (i.e. a rigid body or boundary surfae) by a ol-

letion of spherial partiles so it retains the simpliity of partile-to-partile ontat

interation. This approah, however, is geometrially inaurate and omputationally

intensive due to the introdution of an exessive number of partiles. A seond simple

approah (used in some numerial odes, e.g., ABAQUS) is to de�ne the boundaries as

analytial surfaes. This approah is omputationally inexpensive, but it an only be

applied in ertain spei� senarios, where the use of in�nite surfaes does not disturb

the alulation. A more omplex approah whih ombines auray and versatility is

to resolve the ontat of partiles (spheres typially) with a �nite element boundary

mesh. These methods take into aount the possibility of ontat with the primitives of

the FE mesh surfae, i.e., faet, edge or vertex ontat. The term FE will be used in

this dissertation when referring to the geometry elements (triangles, quadrilaterals, et.)

whih are used to disretize the boundaries even if they are not used for the alulation

of a deformable solid.

Horner et al. [49℄ and Kremmer and Favier [61℄ developed the �rst hierarhial ontat

resolution algorithms for ontat problems between spherial partiles and triangular el-

ements, while Zang et al. [145℄ proposed similar approahes aounting for quadrilateral

faets. Dang and Meguid [26℄ upgraded the method introduing a numerial orretion

to improve smoothness and stability. Su et al. [115℄ developed a omplex algorithm

involving polygonal faets under the name of RIGID whih inludes an elimination pro-

edure to resolve the ontat in di�erent non-smooth ontat situations. This approah,

however, does not onsider ontat with entities of di�erent surfaes at the same time

(multiple ontats) leading to an inaurate ontat interation. The upgraded RIGID-

II method presented later by Su et al. [116℄ and also the method proposed by Hu et al.

[51℄ aount for the multiple ontat situations, but they have a omplex elimination

proedure with many di�erent ontat senarios to distinguish, whih is di�ult to ode

in pratie. Chen et al. [20℄ presented a simple and aurate algorithm whih ov-

ers many situations. Their elimination proedure, however, requires a speial database

whih strongly limits the parallel omputation.
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In the framework of this thesis, the Double Hierarhy Method (H2
) [110℄, has been de-

veloped. It onsists in a simple ontat algorithm based on the FE boundary approah.

It is speially designed to resolve e�iently the intersetion of spheres with triangles

and planar quadrilaterals but it an also work �ne with any other higher order planar

onvex polyhedra. A two layer hierarhy is applied upgrading the lassial hierarhy

method presented by Horner [49℄; namely hierarhy on ontat type followed by hier-

arhy on distane. The �rst one, lassi�es the type of ontat (faet, edge or vertex)

for every ontating neighbour in a hierarhial way, while the distane-based hierarhy

determines whih of the ontats found are valid or relevant and whih ones have to be

removed.

Industrial appliations may involve a large number of partiles and also a �ne de�nition

of the boundaries whih, using boundary FE, would turn into large number of onditions

to hek. The seleted algorithm works e�iently in parallel omputations as will be

shown in hapter 6. This is a lear advantage over the above-mentioned publiations

whih algorithms are mostly serial. Exeptions are Nakashima [91℄ whose method is

presumably parallelizable and Zang [145℄ and Su [116℄ whih remark the importane of

the future parallelization of their algorithms.

Summarizing, the ontat searh framework presented is designed to satisfy the follow-

ing requirements:

• Inlude poly-disperse elements for both: FEs and DEs.

• Allow di�erent FE geometries and primitives (triangle, quadrilateral, polygon).

• Ensure ontat ontinuity in non-smooth regions (edges and verties).

• Resolve multiple ontats and ontat with di�erent entities simultaneously.

• Need low memory storage.

• Be simple, fast and aurate.

• Be fully parallelizable.
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Table 3.1: Strengths and drawbaks of the ontat detetion algorithms evaluated

Glued Anal.

Hierarhy

RIGID RIGID-II Hu Chen H2

[60℄

[26, 49,

61, 145℄

[115℄ [116℄ [51℄ [20℄ [110℄

Wide size rate DEs/FEs - - × X X X × X

Contat elem. typologies × - X X X × × X

Boundary shape variety X × X X X X X X

Multi-ontat X - X × X X X X

Simple X X X × × × X X

E�ient × X × X × × X X

Aurate × × X × X X × X

Low storage X X × × × × X X

Upgradable to CSM × × X X X X X X

Large indentation × X × × X∗ X∗ × X∗
Contat ontinuity × - X∗ × X∗ X∗ X∗ X∗
Symbol (X) implies that the method satis�es the property while (×) indiates that the method

does not satisfy the property. Symbol (-) denotes that the property does not apply to that

method and (X∗) means that, the method satis�es the property upon some limitations.

Table 3.1 summarizes the strengths and drawbaks of the reviewed ontat detetion

methods. Methods whih have a elimination proedure to remove the invalid ontats

(RIGID-II [116℄, Hu et al. [51℄, Chen et al. [20℄ and H2
) are the most aurate. They

treat the ases with large indentations (relative to the FE size) and provide a solution to

the ontat ontinuity in non-smooth boundary regions. These methods have, however,

some limitations due to the fat that the real deformed geometry of the sphere is not

represented in the DEM. Due to this fat, error in the ontat detetion in onave

transitions is ommon for all these methods (inluding the H2
). This is analysed in

setion 3.5.
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3.2 DE-FE ontat detetion algorithm

The strategy of dividing the searh into global and loal stages also applies to the DE-

FE ollision detetion. In the same way, the methods desribed in setion 2.2 regarding

the global searh an be also used here. The ell-based algorithm presented in [140℄

has been seleted for the global searh due to its simpliity and the possibility to be

parallelized.

As it has been appointed in setion 2.2, the most expensive part of the ollision detetion

lies on the loal resolution whih an reah values over 75 perent of the simulation

when non-spherial elements are involved [49℄. To that end, a speialized algorithm

has been developed for the ase of ollision between spheres (partiles) and triangles or

quadrilaterals (boundary elements) whih is partiularly e�ient. Moreover, a further

split of the Loal Contat Resolution is performed: a) A Fast Intersetion Test, b) Full

haraterization of valid ontats. Figure 3.3 shows the di�erent stages of the searh.

3.2.1 Global Searh algorithm

The main purpose of the Global Searh is to determine through a fast rough searh whih

are the potential neighbours for every element in the domain. A ell-based algorithm

[140℄ is hosen here whih has been parallelized in OMP and adapted for the DE-FE

searh. The FE domain is seleted to build the searh bins taking advantage of the

fat that usually the spatial distribution of the FEs is more regular and in some ases

�xed. As an additional feature, the Searh Bins is built dynamially onsidering only

the elements belonging to the intersetion of the bounding boxes of the DEs and FEs

domains, FE ∈ ΩI and DE ∈ ΩI . Fig. 3.1(a) shows how the intersetion evolves as

long as the simulation goes on. On the other hand, only the DEs inside the interse-

tion domain (ΩI) will look for their neighbours. This redues signi�antly the ontat

pairs to be heked afterwards and, therefore, the global searh performane is inreased.

In the global searh, every FE and DE has an assoiated Bounding Box (FEBBX , DEBBX)

that is used to tag the position of the elements on the Searh Bins and rapidly hek

for potential neighbours. This is done using a hash table struture as depited in �g.

3.1(d) whih relates eah ell to the bounding box FEBBX that fall into it. Retangular

hexahedral bounding boxes enompassing both types of elements are hosen here.
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The steps needed to perform the neighbouring searh at the Global Searh level are:

a) Set the bounding box of the inter-

setion of domains ΩI (�g. 3.1(a)).

b) Set the bounding box for every

FE ∈ ΩI (�g. 3.1(b)).

) Generate the Searh Bins based on

the size and position of the bound-

ing boxes FEBBX of the FE ∈ ΩI

(�g. 3.1()).

d) Plae every FE in the Searh Bins

(based on their assoiated bounding

box FEBBX oordinates) and build

the hash table (�g. 3.1(d)).

e) Set the bounding box for every

DE ∈ ΩI (�g. 3.1(e)).

f) For every DE partile ∈ ΩI obtain

the FE potential neighbours in the

Searh Bins. Chek the intersetion

of the DEBBX with the FEBBX of

the FEs lying in the surrounding

ells (�g. 3.1(f)).

g) Apply the Loal Resolution Method

to the pairs with interseting bound-

ing boxes (�g. 3.1(g)).

(a) Evolution of ΩI

(b) FEBBX ∈ ΩI

() Bins over FEs

∈ ΩI

(d) Hash table

(e) DEBBX ∈ ΩI

(f) Intersetion

ells

(g) Loal Contat

Resolution

Figure 3.1: Global searh stages
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3.2.2 Loal Contat Resolution

Normally a full haraterization takes plae after the global searh and determines om-

pletely the ontat status of eah potential ontat pair. In this thesis a split is suggested:

• Fast Intersetion Test: First, the atual ontating pairs are determined. This

has to be fast beause there are many FE potential neighbours in the adjaent ells

to be heked. Therefore, all detailed ontat omputations suh as determining

the type of ontat, the ontat point, normal diretion, et. are skipped. On the

other hand, a good auray in the determination of the ontating neighbours

is needed. It should be avoided to �ll the ontat pool with FE whih do not

have ontat and have to be eliminated or treated subsequently. This proedure

is desribed in detail in setion 3.3.

• Full ontat haraterization: A more expensive hek takes plae whih de-

termines the type of ontat of every neighbour, whih are the relevant ontats

and whih ones have to be removed in order to avoid instabilities or redundant

ontat evaluations in non-smooth regions and ontat transitions. All the de-

tailed ontat harateristis are fully determined at this stage for eah one of the

valid neighbouring entities.

The split gives the ode higher modularity, i.e. any other ontat haraterization

an be applied for the ontating entities. Moreover, in the in-house ode Kratos, the

split yields also higher e�ieny (see table 6.2 in hapter 6). This is due to the fat

that the full haraterization is a muh more expensive proedure than the simple Fast

Intersetion Test, and at the same time, the �rst group of FE potential neighbours is

very large in omparison to the group of FE with ontat.

In order to demonstrate this, an example of a horizontal mixer with approximately

30 k DEs and 2.5 k FEs has been run for 0.5 seond, i.e. 1.5 turns of the helial blades

(full desription in setion 6.2.2). The umulative ounts of the following quantities is

omputed:

• FE Potential neighbours: The number of times the Fast Intersetion Test (setion

3.3) is alled (number of FE potential neighbours to be heked) averaged over the

number of partiles.

• FE with ontat : The average number of FE per partile that yield a positive

result (have intersetion with sphere) in the Fast Intersetion Test.
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• Entity with valid ontat : The average number of relevant entities per partile

determined by the H2
Method.
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Figure 3.2: Counts of FE heks in di�erent stages

Fig. 3.2 presents the results whih show that the number of FE Potential Neighbours to

be treated is large ompared to the FE with atual ontat, a ratio of 30 : 1. Addition-

ally, as it will be shown in hapter 6, the improvement in performane showed in Table

6.2 it an be onluded that it is a good hoie to perform the split whih additionally

brings modularity to the ode.

Figure 3.3 summarizes the stages in whih the neighbour �nding is divided.

Figure 3.3: Neighbour �nding sheme
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3.3 Fast Intersetion Test

An e�ient algorithm designed to determine the intersetion of spheres ontating tri-

angles or planar quadrilaterals is desribed here. Some of the proedures existing in

the omputer graphis bibliography [33, 57℄ have been adapted to the ase where the

faet ontat (inside of the FE) ours in a substantial higher frequeny ompared to

edge and vertex geometrial ontat types. See [51℄ where the type of ontat frequeny

(faet, edge, vertex) is determined for di�erent number of partiles and relative sizes.

The test works for any planar onvex polygons of N sides. For every DE ∈ ΩI we loop

over the FE potential neighbours provided by Global Neighbour Searhing algorithm.

Every FE with valid ontat is stored in an array for every DE.

3.3.1 Intersetion test with the plane ontaining the FE

The �rst hek is to determine whether the partile intersets the πm
plane formed by

the m− th planar �nite element

e©m
. This is represented in �g. 3.4.

Figure 3.4: Intersetion of a DE partile with a plane formed by a plane FE

The outward-pointing normal of the plane an be alulated with the ross produt

T of any pair of edges taken ounter-lokwise. This an be written in the following

form, using the permutation tensor ǫijk on two edges formed, for example, by the three

onseutive verties v
1
, v

2
, v

3
:

Ti = ǫijk(v
2
j − v1j ) · (v3k − v2k) (3.1)

whih has to be normalized to unit length to obtain the normal to the plane n:
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n =
T

‖T ‖ (3.2)

In the ase of a zero-thikness wall whih an have ontat at both sides of the FE,

the sense of the normal will be set suh that points outwards to eah partile entre.

One the normal is de�ned, the distane of the DE entre C to the plane πm
an be

determined taking any known point of the plane, namely a vertex va, as

dπ =

3
∑

i=1

(ni · Ci − ni · vai ) (3.3)

The distane dπ should be ompared to the radius R. If and only if |dπ| ≤ R, the

ontat between the sphere and the FE is possible. In this ase, we proeed with the

next heks. Otherwise, the ontat with the urrent FE is disarded and we will jump

to hek the next potential FE neighbour.

3.3.2 Inside-Outside test

The purpose of this test is to determine whether the ontat is inside the FE (faet

ontat) or outside (edge, vertex or no ontat). It applies to the ases whih |dπ| ≤ R.

A modi�ation of the Inside-Outside status hek [135℄ is used. The projetion Cπm
of

the entre C of a DE onto the plane πm
formed by an element

e©m
with normal n an

be alulated as

Cπm = C− dπ · n (3.4)

The next step is to evaluate whether the projetion Cπm
lies inside or outside the FE

e©m
with respet to every edge ea

formed with the verties v
a
and v

a+1
(v

N = v
0
) (See

�g. 3.5). For every edge ea
we ompute the ross produt sign sa as

ea = v
a+1 − v

a
(3.5)

sa = (ea × (Cπm − v
a)) · n (3.6)

If the produt is positive, the projetion point Cπm
turns to be inside the triangle

with respet to that edge. The loop proeeds with the next edges. If the same result

is found for every edge, ontat ours with the faet of the FE (Inside) and so the
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ontat is assured. Otherwise, if for any edge an Outside status is found, the loop

aborts automatially and no ontat with faet an be found. The urrent value of the

edge index a is stored in an auxiliary variable indexe whih will be used in the next step

where ontat with verties or edges is heked.

Figure 3.5: Inside-Outside hek of the projetion point edge by edge

3.3.3 Intersetion test with an edge

This test is needed for the ases where |dπ| ≤ R but the Inside-Outside test failed. Here

we use the idea that the edge ontat an not happen to be on the edges where the

Inside-Outside hek yield a Inside status. Therefore, it is reommendable to test the

edges ea
with a ∈ [indexe, N ] starting from the vertex whih failed in the previous test

and skipping the previous ones (Note that the edge hek is the most expensive one).

This approah has also been used by Chen et al. [20℄.

First, the shortest distane de between the edge ea
and the partile entre C should

be alulated and ompared to the radius R. The distane is alulated �nding out the

ontat point Pc, as

de = ‖Pc−C‖ (3.7)

Pc = v
a + p

ea

‖ea‖ (3.8)

ea = v
a+1 − v

a
(3.9)

where p is the distane resulting from the projetion of the vetor onneting the entre

C and the vertex v
a
onto the edge ea

:
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p = (C − v
a) · ea

(3.10)

Figure 3.6: Intersetion of a DE partile with an edge

If de > R the ontat with this edge is not possible and the hek starts again with the

next edge ea+1
. Otherwise, if de ≤ R we determine where the Pc lies, along the edge,

with the help of η, de�ned as:

η =
p

‖ea‖ (3.11)

The ase of 0 ≤ η ≤ 1 implies edge ontat. Therefore ontat is found and the Fast

Intersetion Test �nishes yielding a positive result. The FE neighbour is saved to the

urrent DE and the algorithm proeeds to hek the next FE potential neighbour.

Otherwise, if this test failed for the urrent edge ea
, the onneting verties (v

a
and

v
a+1

) have to be evaluated. A value of η < 0 indiates that the hek has to be done

with v
a
; on the other hand, for η > 1 the vertex to be tested is v

a+1
.

3.3.4 Intersetion test with a vertex

For the vertex v
a
under onsideration the squared distane to the DE entre C is

alulated:

dva
2 =

i<3
∑

i=0

(Ci − v
a
i )

2
(3.12)

If dva
2 ≤ R2

, then the Fast Intersetion Test yields a positive result and the test �nishes.

Otherwise, the test moves on with the next edge ea+1
and its subsequent verties.
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We reall that the purpose of this Fast Intersetion Test is merely to determine whether

there is intersetion or not between the DE sphere and the FE planar onvex polygon.

An intersetion found with a vertex or edge does not ensure that this is the atual ontat

point. In this ase, however, we omit at this stage further heks with subsequent edges

or verties where the ontat point an happen to be loser.

3.3.5 Fast Intersetion Test algorithm

Table 3.2: Fast Intersetion Test sheme

Parallel loop over all DE, hek FE potential neighbours.

(1) Intersetion with plane ontaining the FE

e©m

Calulate normal outwards n = T

‖T ‖ , Ti = ǫijk(v
2
j−v1j )·(v3k−v2k).

Calulate distane to plane dπ =
3
∑

i=1

(ni · Ci − ni · vai ).

if( |dπ| > R ): ⇒ Go to (4) (False).

else: ⇒ Calulate Cπm = C− d · n and Go to (2).

(2) Inside-Outside test

Initialize indexe = 0 and Inside-Outside �ag = In.

loop over every edge ea = v
a+1 − v

a
with a ∈ [0, N ].

alulate sa = (ea × (Cπm − v
a)) · n.

if(sa < 0): ⇒ Inside-Outside = Out.

Break loop. Save indexe = a. Go to (3).

else(sa ≥ 0): ⇒ Continue with next edge.

if(Inside-Outside �ag == In): ⇒ Go to (4) (True).

else: ⇒ Go to (3).



74 The Double Hierarhy (H2
) Method for DE-FE ontat detetion

(3) Intersetion with Edge and Vertex

loop over every edge ea
with a ∈ [indexe, N ].

Calulate projetion: p = (C − v
a) · ea

.

Calulate the ontat point: Pc = v
a + p e

a

‖ea‖ .

Calulate distane to edge de = ‖Pc−C‖.
if(de > R): ⇒ Continue with next edge.

else: Calulate η = p
‖ea‖ .

if(0 ≤ η ≤ 1 ): ⇒ Go to (4) (True).

if(η < 0): ⇒ d2va =
i<3
∑

i=0

(Ci − v
a
i )

2
.

if(d2va ≤ R2
): ⇒ Go to (4) (True).

else: ⇒ hek next edge.

if(η > 1): ⇒ d2va+1 =
i<3
∑

i=0

(

Ci − v
a+1
i

)2
.

if(d2va+1 ≤ R2
): ⇒ Go to (4) (True).

else: ⇒ hek next edge.

Go to (4) (False).

(4) Contat Found (True/False)

True: ⇒ Store

e©m
as FE with ontat and Continue.

False: ⇒ Stop! No ontat.

The presented algorithm applies to any planar onvex polygons of N sides.



The Double Hierarhy Method 75

3.4 The Double Hierarhy Method

The appliation of onstitutive ontat laws suh as the Hertz-Mindlin (setion 2.5.2)

requires that the ontat surfaes are smooth and present a unique normal at eah

point. In the DE-FE ontat, usually, the original geometry presents regions where

this requirement is not ful�lled. Moreover, even the smooth surfaes loose this feature

when they are disretized by means of FEs. In these situations a speial treatment of

the non-smooth regions should be applied under the requirement of some onditions to

ensure reasonable results. The following onditions were also analysed in the work by

Wellmann [136℄:

• The ontat onstitutive model will be applied normally when the ontat is on

the faet and will vanish when there is no interpenetration between the elements.

• There should be no disontinuities in the ontat fore when a ontat point evolves

from faet to edge and the other way round in order to avoid non-physial results

and numerial instabilities.

• The energy should be onserved in an elasti fritionless impat.

The use of the present ontat determination algorithm helps the seleted ontat model

ensuring these objetives as it will be shown through the validation examples in setion

3.6.

This proedure is applied to the list of FE with ontat that the Fast Intersetion Test

has generated for every partile. In the ase of no previous fast hek this operation

ould be diretly applied as a Loal Contat Resolution with the disadvantage that

many potential FE have to be tested. It is developed in two di�erent stages:

• Contat Type Hierarhy (setion 3.4.1): where for every FE with ontat the

entity with higher priority is determined.

• Distane Hierarhy (setion 3.4.2): the elimination proedure takes plae deter-

mining whih ontat points have distane priority over others whih are redundant

or false and have to be eliminated.
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3.4.1 Contat Type Hierarhy

The basis of this proedure is that eah primitive has hierarhy over its sub-entities, i.e.,

a faet of a N-sides polygon has hierarhy over the N edges that ompose it. In turn

eah of the edges ea
has hierarhy over its two verties v

a,va+1
. Figure 3.7 outlines

the Contat Hierarhy for a triangle. The algorithm is organized as a sequene of three

entity-heking levels. If a partile is in ontat with the faet of a FE the ontat searh

over its edges and verties, whih are in a lower hierarhy level, is disarded (see �g.

3.8). Otherwise, if ontat with the FE faet does not exist, the ontat hek should

ontinue over the sub-entities. Similarly, at the edges level, any ontat with an edge

anels out further ontat heks for those two verties belonging to that edge. It does

not anel out, however, the ontat hek with the other edges beause they are at the

same hierarhy level. Table 3.3 in setion 3.4.1 displays the pseudoode of the ontat

Type detetion.

Figure 3.7: Contat Type Hierarhy for

a triangle

Figure 3.8: Contat with faet. Edges

and verties are disarded from ontat

hek

Every time a new ontat entity is determined by the Contat Type Hierarhy, the Dis-

tane Hierarhy (setion 3.4.2) takes plae immediately after. The Distane Hierarhy

will determine if the new ontating entity found is redundant or non-valid, if it anels

out the previously found ones or if it is a new valid ontating entity to be onsidered

for the DE.
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For any valid ontat entity the geometrial ontat harateristis that will be stored

are:

• The ontat Point Pc.

• The FE nodal weights.

• The ontat type: Faet, Edge or Vertex.

Note that some of the geometrial harateristis suh as the distane, the normal vetor

or the ontat loal axis an be realulated later when the ontat onstitutive law is

applied and, thus, it is optional to store them here at this stage.

Faet level

The hek proeeds in the same way as explained in setion 3.3, heking for the interse-

tion of the DE with the plane formed by the FE (setion 3.3.1). If the Fast Intersetion

Test has been performed previously |dπ| ≤ R is neessarily true sine ontat has been

found for this FE. Otherwise, if no previous Fast Intersetion Test has been arried out,

this ondition applies now to disard FE without ontat.

Next, the Inside-Outside test (setion 3.3.2) has to be performed. This test will tell

us whether the projetion Cπm
(equation 3.4) lies on the faet (inside the FE) or it is

outside, ontating with the edges or verties. Fig. 3.9 shows two examples where the

projetion Cπm
is inside and outside the FE faet.

(a) Cπm
inside the faet (b) Cπm

outside the faet

Figure 3.9: Example of projetion Cπm
inside and outside the FE faet
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The values of the ross produt sign sa obtained from equation 3.6 for every edge ea

are used to obtain the weights of the shape funtion at the ontat point. The areas

needed for the alulation are simply one half of the ross produt sign: ∆a = sa/2.

The weights of the nodal shape funtions on the ontat point are then alulated. For

a triangle:

N1 =
∆2

∆̂T

, N2 =
∆3

∆̂T

, N3 =
∆1

∆̂T

where ∆̂T = ∆1 +∆2 +∆3 (3.13)

For 4-nodded onvex quadrilaterals (�g. 3.10 the following expression an be applied

as introdued in Zhong [148℄):

Figure 3.10: Triangular areas for the alulation of shape funtion values in a planar

onvex quadrilateral

N1 =
∆2∆3

∆̂Q

, N2 =
∆3∆4

∆̂Q

, N3 =
∆4∆1

∆̂Q

, N4 =
∆1∆2

∆̂Q

where ∆̂Q = (∆1 +∆3)(∆2 +∆4)

(3.14)

Note that if any of the ross produt signs sa evaluated with respet to the edge ea

yields a negative value the hek stops sine the projetion of the entre Cπm
lies outside.

The urrent edge index indexe is stored and it will be the �rst to be heked as it has

been appointed in setion 3.3.3.

If the projetion Cπm
(equation 3.4) lies inside the faet, it beomes the ontat point

Pc. Due to the highest hierarhy level of the faet, the Contat Type Hierarhy �nishes

here for this FE. The Distane Hierarhy is now alled and all the neessary ontat

harateristis are saved.
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Edge level

Here the edge hek (setion 3.3.3) has to be applied for every edge ea
with a ∈

[indexe, N ] in a N-sided FE starting with the �rst edge that yielded an outside sta-

tus at the Faet level.

When ontat with the edge ea
is found the hek at the lower level for the verties

assoiated to it, v
a
and v

a+1
, is disarded (�g. 3.11). The ontat hek with the fol-

lowing edges an not be disarded, however, sine they are at the same hierarhy level

in terms of Contat Type. The Distane Hierarhy will determine the validity of the

new ontat and eliminate or substitute previous ones. This is a key di�erene with the

Fast Intersetion Test where the hek automatially stops one a ontat entity is found.

Figure 3.11: Contat with edge. Ver-

ties belonging to that edge are dis-

arded

Figure 3.12: Weights for an edge on-

tat in a triangle

The nodal weights an be obtained from the η parameter (equation 3.11) at the edge

ea
. Fig. 3.12 shows graphially how η is determined,

Na = 1− η, Na+1 = η (NN = N0) (3.15)
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Equation 3.15 gives the values at the nodes onneted to the edge ea
. The rest of

nodes have a null value for its shape funtions. If the edge ontat hek failed but the

distane de (equation 3.7) is lower than the radius (de ≤ R) the losest vertex (based on

the alulation of η) will be heked. The hek will proeed in any ase (found edge,

found vertex or none) with the next edges.

Vertex level

The vertex hek is desribed in setion 3.3.4. Fig. 3.13 illustrates why the edge ea
has

hierarhy over its two verties v
a,va+1

but not over the non-ontiguous one v
a+2

. The

shape funtion weights are 1 for the found vertex and 0 for the rest.

Figure 3.13: Contat with edge and vertex. When ontat exists with edge e1
it an

also exist with vertex v
3

As usual the Distane Hierarhy is alled after the ontat is deteted and, if the ontat

is valid, its harateristis are stored.
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Contat Type Hierarhy sheme

The sheme of Table 3.3 assumes that the Fast Intersetion Test has taken plae already.

For every DE the �rst loop is over the found neighbours. The hek an be performed

in parallel for every partile in the model.

Table 3.3: Contat Type Hierarhy algorithm

loop over every FE with ontat neighbour

e©m
.

(1) Faet level

Projet the entre onto the plane Cπm
(equation 3.4).

Perform the Inside-Outside test (setion 3.3.2)

if Contat: ⇒
Go to Distane Hierarhy (Table 3.4) and Stop!

else: ⇒ Go to (2) with index indexe.

(2) Edge level

loop over every edge ea
with a ∈ [indexe, N ].

Perform the Edge Chek (setion 3.3.3).

if Contat ⇒ Go to Distane Hierarhy (Table 3.4).

else if (de ≤ R and η < 0) ⇒ Go to (3) with v
a
.

else if (de ≤ R and η > 1) ⇒ Go to (3) with v
a+1

.

Continue with the next edge.

(3) Vertex level

Perform Vertex hek (setion 3.3.4).

if Contat ⇒ Go to Distane Hierarhy (Table 3.4).

Go To Edge level and hek next edge.
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3.4.2 Distane Hierarhy

A spherial partile an be, in general, in ontat with many di�erent FE entities. Some-

times these ontats are result of the penetrations introdued by the penalty method

and some ontats give redundant or invalid information and, therefore, should be elim-

inated. This is the senario shown in �g. 3.14 where ontat with elements

e©2
,

e©3
and

e©4
is deteted. In a ollision of the sphere normal to the plane, the fore applied by the

plane surfae to the sphere must have also a normal diretion and a magnitude only given

by the penetrations and independent of the position x and y on the plane. Therefore the

ontat fore oming from the edges of elements

e©2
and

e©4
should not be taken into a-

ount. This is solved by the distane-based hierarhy whih is an elimination proedure

that takes plae every time a new ontat entity is found at the Contat Type Hierarhy.

The proedure basially ompares the ontat vetors against their projetions one

another. The new ontat vetor Vci = C−Pci is projeted onto the previously found

ontat vetor Vcj = C−Pcj and vie versa. The following expressions are obtained:

Pri,j = Vci ·
Vcj

‖Vcj‖
, P rj,i = Vcj ·

Vci

‖Vci‖
(3.16)

Figure 3.14: Contat between a DE and a FE mesh whose elements are smaller than

the indentation
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The ontat hek is performed using the algorithm presented in Table 3.4:

Table 3.4: Distane Hierarhy hek

Given a new found ontat i by the Contat Type Hierarhy:

(1) loop over every existing ontat (j = 1, ..., n)

Projet Vci on Vcj: ⇒ Pri,j = Vci · Vcj

‖Vcj‖

Projet Vcj on Vci: ⇒ Prj,i = Vcj · Vci

‖Vci‖

if ( Pri,j ≥ ‖Vcj‖ ): ⇒ i is an invalid ontat.

Go to (2) (False) and break loop.

else if ( Prj,i ≥ ‖Vci‖ ): ⇒ j is an invalid ontat.

Disard j ! Continue loop.

Go to (2) (True).

(2) Valid ontat (True/False)

if ( True ): ⇒ i is valid ontat! Save ontat details.

else ( False ): ⇒ i is an invalid ontat! Disard i!.

Figures 3.15 and 3.16 show an example of how the elimination proedure is performed

for two di�erent possible ases. On the left side all the found ontat vetors are repre-

sented. A graphial interpretation of the projetions is also given for the �rst example.

On the right side only the �nal relevant ontat vetors, that the Distane Hierarhy

yields, are shown.

In the �rst situation (�g. 3.15), no ontat with edges of elements

e©2
and

e©4
is taken

into aount, sine their projetions, Pr2,3 and Pr4,3, over the faet ontat vetor of

element

e©3
have the same module as the ontat vetor Vc3 itself.
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(a) Found ontat points and vetors (b) Relevant ontat vetors

Figure 3.15: Elimination proedure in situation 1

(a) Found ontat points and vetors (b) Relevant ontat vetors

Figure 3.16: Elimination proedure in situation 2

In the seond situation (�g. 3.16), the sphere has ontat with the faet of element

e©4
, the edge of element

e©3
and the shared edge of elements

e©1
and

e©2
whih will

be appearing as two di�erent ontat vetors Vc1 and Vc2 given by the Contat Type

Hierarhy stage. These vetors do not appear diretly in the �gures but they are alu-

lated by C−Pc1 and C−Pc2 respetively. First, note that either ontat with Vc1

or Vc2 will be arbitrarily disarded by the elimination proedure sine they are mathe-

matially the same vetor. Let us assume the Vc1 is kept and Vc2 disarded. On the

other hand, the projetion Pr3,4 of the ontat vetor Vc3 over the ontat vetor Vc4

disards ontat with element

e©3
. Finally, ontats with element

e©4
and

e©1
do not

disard eah other sine their projetions one another have a value of Pr1,4 = 0 and

Pr4,1 = 0 (they form a 90 degrees angle) and therefore are smaller than the length of

the ontat vetors. Hene both ontats are taken into aount, as it is expeted.
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The main advantage of this method lies in its wide generality. It works �ne for most of

the traditional on�itive situations where multi-ontats and FE transitions are present.

It is onsistent and so the order in whih the neighbours have been found and stored

does not a�et the �nal result. The tests arried out in the validation (setion 3.6) show

that the fore vetor always has the appropriate diretion.

3.4.3 Note on types of FE geometries

Taking advantage of the generality of the method, the full algorithm an be applied

diretly to any N-sided planar onvex polygonal FE. The weights an be alulated

with the baryentri oordinates [79, 117℄ as:

Ni =
cot(αi) + cot(βi)

‖Pc− vi‖2
(3.17)

The de�nition of αi and βi is shown in �g. 3.17.

Figure 3.17: Angles formed with the vetor v
i−Pc and eah of the two edges onneted

to node i in a polygon

Contat surfaes with non-planar quadrilaterals or other urved elements are not on

the sope of this paper. Generally it involves a minimization problem [141℄. However,

Chen [20℄ proposes an averaging of the normal and a relaxed ontat riterion.
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3.4.4 Note on types of DE geometries

As disussed in setion 2.7, industrial appliations demand the use of more aurate

strategies to model the partiles rather than using spheres. The most popular methods

are the superquadris [136℄, level set funtions [3℄, or luster of spheres [39℄. The hoie of

modelling generi partiles with the sphere lustering tehnique provides a solution with

a good ratio between auray and omputational ost. This approah adapts perfetly

to the presented algorithm and, therefore, yields a fast ontat detetion whih is fully

parallelizable.

3.5 Method limitations

One of the major limitations or soure of errors of the method is the inherent lak of

auray that a FE mesh disretization introdues to a model. This has an e�et in the

error detetion and therefore globally a�ets on the overall apparent frition. Details of

this an be found in [18℄; in this setion only the loal e�ets in terms of normal and

tangential fores are analysed.

3.5.1 Normal fore in onave transitions

A limitation of this method whih is ommon to the revised penalty-based ontat al-

gorithms ours when a DE ontats with a slightly non-onvex surfae. Here the error

introdued by the method is analysed and quanti�ed for normal fores in the ase of

spherial DE in onave transitions.

The penalty method introdues an indentation whih aounts for the loal elasti

deformation of the disrete element during a ontat event and allows the imposition

of the ontat ondition in a weak form. The use of rigid geometries with non-physial

indentation introdues error in the ontat detetion. Constitutive laws suh as Hertz-

Mindlin present a limitation in terms of small deformation in order to work �ne. This

rule does not apply, however, to non-smooth regions where the basi assumptions are

not met and ontat detetion errors arise.
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(a) Error region (b) Contat with 2 planes

Figure 3.18: Error emerging in onave transitions

A sphere moves horizontally in a plane πa until it reahes a transition with other plane

πb whih forms an aute angle α with the plane πa (�g. 3.18(a)). In this situation a

region an be de�ned between the urrent ontat plane πa and the plane πn formed by

the ommon edge and the normal of the seond plane nb. Whenever the sphere entre is

in that region a disontinuity in fores will our. The ontat with plane πb is deteted

only when the entre C has a normal projetion onto the plane πb forming a tangential

ontat. Fig. 3.18(b) shows that when the new ontat is deteted, some indentation t

is existing already and, therefore, the new ontat fore value introdues a disontinuity.

From the geometrial relations, the error ξ an be quanti�ed as a ratio of the absolute

value of the new fore ‖F nb
‖ over the absolute value of the urrent fore ‖F na

‖. This
value an be expressed in funtion of the hange of angle α and indentation ratio t/δ

relative to the sphere radius R:

ξ =
‖F nb

‖
‖F na

‖ =

{

t/δ for linear ase

(t/δ)3/2 for Hertzian ase

(3.18)

Using the geometrial relationships and setting γ = δ/R as the relative indentation

measure, the following expression is obtained:

t =
R(γ − 1 + cosα)

cosα
(3.19)

Finally the following expression is found:

ξ =







γ−1+cosα
γ cosα

for linear ase

(

γ−1+cosα
γ cosα

)3/2

for Hertzian ase

(3.20)
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The solution is plotted for the two ases (linear and Hertzian) for di�erent hange of

angle α and di�erent γ indentation ratio.
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Figure 3.19: Values of ξ measure error in funtion of hange of angle α and indentation

ratio γ

Fig. 3.19 shows that for an indentation of 1% of the radius (γ = 0.01) and a small

hange in the angle of about 10 degrees no error is produed. For an indentation of 3.3%

however, the error measure reahes a value of ξ = 0.41 for the Hertzian ase (ξ = 0.55

for the linear ase) whih turns into a sudden fore of magnitude ‖F nb
‖ = 0.41 ‖F na

‖
in the diretion of nb. The error tends to 0 as the angle hange tends to 90 degrees and

does not our for obtuse angles. On the other hand, the lower the hange of angle α

is, the greater the error is. It is bounded to 100% of error ξ = 1.0 for the extreme ase

of oplanar transition. Lukily this very frequent ase is onsidered by the Distane

Hierarhy (setion 3.4.2) where a tolerane is used to detet the oplanar ases. Note

that the error depends only on geometrial onditions and the indentation ratio relative

to the sphere and not to the boundary FE mesh quality, the dependene of whih has

been solved using the Double Hierarhy Method.
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3.5.2 Tangential fore aross elements

As introdued in setion 2.5, the tangential fore is applied by means of an inremen-

tal sheme whih requires to keep trak of the fores that the partile has with eah

neighbour. In the DE/DE ontat it is enough to transfer these fores from the old

to the new neighbours aording to the partiles' identi�er and properly rotating them

from the old axes to the new loal ontat axes. The problem arises when a partile

moves aross two FE boundary elements. The historial tangential fore would reset to

zero sine the new element in ontat has a new identi�er and an be onsidered a new

ontat. This happens even if the ontat detetion is performed every time step.

Most of the ommon appliations won't yield large errors in this sense sine the tangen-

tial fores is normally not developing up to high values. Partile rotation and damping

makes the tangential fore ontribution small in omparison to the normal fores. The

ases with larger error are the ones regarding sliding events without rolling where the

tangential fore is kept at its maximum (generally the Coulomb frition value). In this

situation the error an be measured in terms of the missing work in a fore-displaement

diagram as the one showed in �g. 3.21 whih orresponds to a linear ontat law [24, 113℄

for normal and tangential diretions.

Figure 3.20: Shemati fore displaement diagram with the disontinuity introdued

by an element transition during a sliding event using a linear ontat law

In average, a partile with linear sti�ness values kn and kt sliding aross a transition

of �nite elements of harateristi length L with a relative indentation δ will have the

following error in the work done by the tangential fore:
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Et =
‖ErrorArea‖
‖TotalArea‖ =

1/2(µδkn)
2/kt

µδknL− 1/2(µδkn)2/kt
=

µδkn/kt
2L− µδkn/kt

≈ µ

2

kn
kt

δ

L
(3.21)

As an example, using the linear model with a ratio κ = kt/kn of 2/7 (suggested in Shäfer

[113℄), with a partile-struture frition oe�ient µ = 0.3 the error in the integral

of the tangential fores over the displaement has a value of Et = 0.525 δ/L. For a

large indentation of 10% of the harateristi size L of the FE, the error is only of

approximately 5%.

This error gets greater however, for the ases where the searh frequeny is low sine

the fores may remain at zero until the new searh is performed. The orret trak of

the ontat fores and the detetion of new ontats are solved using a speial imple-

mentation whih is desribed below.

Continuity of tangential fores in non-smooth transitions

The proposed solution onsists in ahieving the following: in a neighbouring searh event,

for every new neighbourN t+∆t
i with a ontat point Pct+∆t

i at time t+∆t �nd the losest

ontat point at the previous time step Pctj assoiated to the old neighbour N t
j suh

that the distane distPc =
∥

∥Pct+∆t
i − Pctj

∥

∥

for every old neighbour N t
j is minimum.

Additionally, this distane needs to be below a ertain bound to avoid assoiations of

new neighbours oming from non adjaent regions. This an be alulated as follows:

dist <= max
j

: ‖∆sj‖ (3.22)

where ∆sj is the relative tangential displaement at the ontat point between the par-

tile i and �nite element j.

This proedure requires the detetion of the new FEs in the moment where the transition

takes plae. It an obviously be ahieved if the ontat detetion is performed every

step but this is not an e�ient solution. Alternatively, an extended searh an be used

at several time steps together with a loal renewal of neighbours every time step whih

beomes a muh more e�ient solution. This is detailed as part of the implementation

of the distributed method in Appendix B.
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Example: Partile with imposed trajetory sliding over a surfae

A sphere without rotation is given an imposed trajetory to analyse how is the evolution

of the tangential fore when sliding along an irregular surfae with onave and onvex

geometrial parts and inter-element transitions (�g. 3.21). The paths orrespond to an

equidistant o�set of 0.1m to the underling geometry.

Figure 3.21: Point of ontat moving aross two boundary FE

The simulation was run using a linear ontat model (setion 2.5.1) with an exaggerated

partile-wall frition of µ = 5 (78, 69◦) and an extremely large indentation of nearly

30% in order to make the error in the determination of the tangential fore visible. The

tangential fore is expeted to rapidly inrease until the sliding ours, keeping the fore

steady at value determined by the regularized Coloumb's frition model. The rest of

parameters are desribed in Table 3.5.

Table 3.5: Simulation parameters

Material properties Calulation parameters

Radius (m) 0.14 Contat Law Linear

Frition oe�. DE-FE 5 Time step (s) 5 · 10−5

Young's modulus (Pa) 103 Neighbour searh freq. 1

Poisson's ratio 0.2 Simulation time (s) 5.5

Indentation Ratio 28.6%
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Figure 3.22: Shear fore of an imposed movement with inter-element and non-smooth

transitions with the basi implementation

Figure 3.22 shows how every time the partile rosses over a non-smooth transition, the

fore resets to zero when a ontat algorithm is applied without speial treatment of

the tangential fores. This ase was run with a searh frequeny of 1, i.e. performing a

searh every time step.

Figure 3.23: Shear fore of an imposed movement with inter-element and non-smooth

transitions using the speial implementation
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Figure 3.23 shows how the speial implementation desribed above provides ontinuity

in the geometrially non-smooth regions as well as aross element transitions. The use

of the previously explained strategy allows the detetion of new inoming ontats even

if the global searh is performed in a large time spaing; in this ase it was performed

every 100 time steps. The irregularity present in the plot orresponds to the onave

transition where the partile has brie�y two ontats: a new one whih starts to develop

and the old one whih is about to �nish. The numerial results present the expeted

behaviour.

3.6 Validation benhmarks

In this setion, several examples are arried out to test the performane of the Double

Hierarhy method in di�erent aspets. The following tests orrespond to aademial

examples de�ned in ritial situations to validate the ontat alulation proedure. All

benhmarks have been arried out using a Hertzian ontat law (setion 2.5.2).

3.6.1 Faet, edge and vertex ontat

These �rst three benhmarks are represented by a sphere, whih has low sti�ness in

order to ahieve large indentation, ontating three di�erent boundaries meshed with

triangles. In every ase the sphere falls from the same height (1m) vertially and per-

pendiular to the ontat entity whih is respetively a faet, an edge or a vertex. Sine

there is no damping applied, the energy should be onserved and the ball must return

to the initial position after the rebound. The sphere is expeted to follow a vertial

trajetory with idential results for the three ases. Fig. 3.24 shows the benhmarks

display and table 3.24 the simulation parameters.

Figure 3.24: Benhmark layout
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Table 3.6: Simulation parameters

Material properties Calulation parameters

Radius (m) 0.3 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3
) 100 Gravity (m/s2) [0.0,−9.81, 0.0]

Frition oe�. DE-FE 0.3 Time step (s) 1 · 10−5

Young's modulus (Pa) 1 ·105 Neighbour searh freq. 5

Poisson's ratio 0.2
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Figure 3.25: Benhmark results for the faet edge and vertex ontat
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Graph in �g. 3.25(a) shows that, although the indentation is greater than the 30% of

the DE radius leading to multiple ontats with all kind of entities, the fore is applied

only in the vertial diretion (Y diretion). From this, it an be onluded that the

ontat elimination proedure performs orretly. The results are exatly the same in

the three di�erent senarios (faet, edge and vertex ontat). It veri�es also that there

is no energy gain or dissipation sine the rebound maximum height is the same always

as it an be observed in �g. 3.25(b). This is a good test to see that the method works

properly for normal ontats of all three types: with faet, with edge and with vertex

independently of the mesh and the indentation ahieved (always lower than the radius).

3.6.2 Continuity of ontat

It is essential to ensure ontinuity of the ontat fore in the non-smooth ontat regions

and FE element transitions. In the following example the ontinuity of the normal fore

is presented. A DE is set to move along the boundary and its ontat transfers from

the surfae of a triangular element (faet ontat) to one of its edges or verties. A

fritionless and rotation free sphere has a trajetory path enfored (as shown in �g.

3.26) so that the indentation is always onstant (0.01 m either in ontat with the faets

f 1
and f 2

or with the edge e). The simulation parameters are the ones presented in

the table 3.6.

Figure 3.26: Simulation sheme

If ontinuity is met, the fore module must always be the same. The diretion of the

ontat fore should evolve from vertial (normal to f 1
) to horizontal (normal to f2

)

with a smooth transition. This is ahieved due to the fat that the algorithm gives

higher hierarhy to the edge and the vetor is alulated joining the ontat point and

the entre of the sphere.
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(a) Contat f
1

(b) Contat e () Contat e (d) Contat f
2

Figure 3.27: Fore applied by the surfae and the edge to the sphere at di�erent instants

of the simulation

The results show that no disontinuities arise when the ontat evolves from faet

ontat to edge ontat and vie versa, being the ontat fore onstant along all the

simulation and equal to 76.063 N, as expeted. In a in a onave transition however, as

reported in setion 3.5, the ontinuity of normal fores aross di�erent elements is not

fully assured. Even though the error is very small for pratial situations, it is important

to quantify and be aware of.

3.6.3 Multiple ontat

The goal of this test is to hek that the method determines orretly the ase of a

sphere ontating more than one element. The set up of the example onsists of three

spheres falling onto a plane with three di�erent shape holes, as shown in �g. 3.28(a).

Simulation parameters are presented in table 3.7. In this example damping is applied.

Figure 3.28: Multiple ontat test geometry
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Table 3.7: Simulation parameters

Material properties Calulation parameters

Radius (m) 0.3 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3
) 100 Gravity (m/s2) [0.0,−9.81, 0.0]

Frition oe�. DE-FE 0.3 Time step (s) 1 · 10−5

Young's modulus (Pa) 1 ·106 Neighbour searh freq. 1

Poisson's ratio 0.2

Restitution oe�. 0.4

Graph in �g. 3.29 shows the veloity modulus of eah of the DEs involved in the

simulation. It an be seen that the spheres veloity after 2.5 seonds of simulation

is lose to 0, as expeted and a �nal equilibrium position is reahed for every sphere

involving simultaneous ontats with verties and edges.
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Figure 3.29: Veloity of the DEs
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3.6.4 Mesh independene

As appointed in the introdution of setion 3.5 dediated to the method limitations,

the use of lassi �nite elements to disretize a geometry introdues inauray in the

de�nition of the surfaes. The objetive of this test is to hek that the error in the

disretization omes only from that aspet and does not depend on the amount, size

and shape of the �nite elements that are used to mesh the surfaes.

A ball slides with frition on a horizontal plate with a given initial horizontal veloity.

The position of the sphere is set initially in vertial equilibrium upon the plate. The

sphere should start sliding while its angular veloity will progressively inrease up to

a onstant value at whih the sliding event �nishes and only rolling ours thereafter.

This is shematially depited in �g. 3.30(a).

(a) Problem de�nition (b) Simulation set up

Figure 3.30: Benhmark of a sliding sphere on a plane with frition

The analytial solution an be alulated to validate the simulation using equilibrium

equations with kinemati ompatibility onditions and the basi Coulomb frition law.

The moment of inertia of a sphere is Iθ = 2/5mR2
. The following is obtained for the

ombined sliding and rotation phase:

v(t) = v0 − µgt (3.23)

x(t) = v0t− 1/2µgt2 (3.24)
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ω(t) =
Rµmg

Iθ
t =

5µg

2R
t (3.25)

Equation 3.25 omes from integrating the angular aeleration ω̇ for the ase zero

initial angular veloity. The onstant rolling event ours when the tangential veloity

v mathes the angular veloity ω times the radius R:

v = Rω (3.26)

tc =
2v0
7µg

(3.27)

For time t > tc the equations of motion are:

v(t) =
5

7
v0 (3.28)

x(t) =
12v20
49µg

+
5

7
v0(t− t0) (3.29)

ω(t) =
5v0
7R

(3.30)

The set up of the simulation is shown in Figure 3.30(b). Two ases are ompared, one

involves sliding on a plane disretized by a single quadrilateral element while in the other

ase the plane is disretized by 80 triangular elements. The parameters of the simulation

are the same as in the previous example, detailed in Table 3.7. The spheres are given

a initial veloity of 5m/s in the x diretion. The simulation has been run for one se-

ond. The simulation results are plotted together with the analytial solution in �g. 3.31.

Only one numerial solution was inluded in the plot of �g. 3.31 sine the di�erene

between meshes turned to be negligible. In table 3.8 the values of the displaement (x),

veloity (v) and angular veloity (ω) at the end of the simulation (t = 1) are presented.
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Figure 3.31: Numerial results of the displaement and veloity in X with the angular

veloity in Z ompared against the theoretial solution

Table 3.8: Results at the end of the simulation

Quadrilateral Triangle Analytial

x(m) 3.9021 3.9022 3.9182

Error(%) 0.4102 0.4071 -

v(m/s) 3.5410 3.5410 3.5714

Error. (%) 0.8528 0.8528 -

ω(rad/s) −11.9788 −11.9788 −11.9048

Error. (%) 0.0062 0.0062 -

This example shows how the results on the DE pratially independent on the boundary

mesh seleted. On the other side, for the simulation performed, the numerial results

agreed perfetly with the theoretial solution. This ase does not show any notie-

able disontinuity in the normal and tangential ontat fores in the transition between

boundary FEs even without using the speial implementation desribed in setion 3.5.2.
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3.6.5 Brahistohrone

A good benhmark to hek how well does the ontat algorithm perform is the simu-

lation of a sphere sliding without frition in a urve whih solution an be determined

analytially. A ase of speial interest is the yloid whih is has the following properties:

• Brahistohrone: It is the fastest path that goes from point A to B sliding under

the ation of onstant gravity.

• Tautohrone: The time taken by an objet sliding without frition under on-

stant gravity to its lowest point is independent to the starting point.

Following a example is shown where two sphere slides on a yloid urve with two lanes.

The urve goes from the point A = [0, 0]m to point B = [0.2,−0.1]m. One of the par-

tiles is set at the top of the urve while the seond one starts from a lower position as

displayed in �gure 3.32. The simulation parameters are summarized in the table 3.9.

(a) Example set-up (b) 3D view of the mesh

Figure 3.32: Brahistohrone example set-up

The yloid has the following parametri equations:

x(s) = r(s− sin s) (3.31a)

y(s) = r(1− cos s) (3.31b)
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And the travel time is:

t(s) =
1√
2g

∫ sf

s0

√

(

∂x(t)
∂t

)2

+
(

∂y(t)
∂t

)2

√

y(t)
dt =

√

r

g
s (3.32)

Table 3.9: Simulation parameters

Material properties Calulation parameters

Radius (m) 0.01 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3
) 2500 Gravity (m/s2) [0.0,−9.81, 0.0]

Frition oe�. DE-FE 0.0 Time step (s) 1 · 10−5

Young's modulus (Pa) 1 ·107 Neighbour searh freq. 1

Poisson's ratio 0.2

Restitution oe�

∗
. 0.0

∗
Damping was applied to the normal ontat to avoid osillations of the ontat point.

For the present example the parametri values yield: s0 = 0, sf = 3.5084 and r =

0.05172. The numerial solution ompares well against the expeted results as shown

in the following table 3.10. The small error found may ome, among other ause, from

the disretization of the yloid urve into �nite elements and also due to measurement

and set-up of the problem.

Table 3.10: Results

Time to bottom Time to end

Higher partile 0.2198 s Higher partile 0.2516 s
Lower partile 0.2183 s Analytial result 0.2547 s
Error 0.68% Error 1.22%



Chapter 4
Combined DE-FE Method for

partile-struture interation

The interation of granular materials and strutures is present in many industrial ap-

pliations. Some examples in whih the interation takes plae have been listed in the

introdution: silo �ow [59, 150℄, srew-onveyors [99, 100℄, vibrated beds [4, 21℄, ball

mill proesses [56, 84℄, et. On the one hand, the DEM has proved to be an e�ient

method to apture the disontinuous nature of the granular media involved in all those

proesses. On the other hand, the employment of the FEM to simulate the strutures

involved in those industrial appliations an provide better understanding of the prob-

lem and, therefore, ould play an important role in the proess of design optimization.

Examples of appliation �elds in whih the ombined DE-FE oupling has been already

suessfully employed inlude: rok utting [95℄, soil-tyre interation problems [49, 91℄,

soil-struture [26, 136℄, shot peening proesses [43, 90℄, impats with �exible barriers

[67℄, et.

This hapter introdues a oupling proedure whih allows the simulation of problems

involving deformable strutures interating with partiles through mehanial ontat.

Di�erently from the problem of partiles ontating rigid boundaries, the ontat with

deformable strutures alulated with FE, requires the appliation of more advaned

ontat models as it will be appointed along the hapter.
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4.1 Coupling proedure

The omputation of the oupled DE-FE problem is divided in the two domains. The

DEs see the surfae elements of the FE domain as moving boundaries. In this sense the

position of those boundaries at eah time step su�es to alulate the DE method in

the same way as it has been detailed in hapters 2 and 3. On the other hand, the FE

problem needs the introdution of the ontat fores as nodal fores in order to solve

the lassial problem of solid mehanis desribed in setion 4.2. The proedure of how

to transfer DE ontat fores onto FE nodal fores will be desribed in setion 4.3.1.

The basi steps of the ombined or oupled DE-FE proedure for the partile-struture

problem adapts very well to that of the disrete elements (�gure 2.1) with the following

details:

1. Contat Detetion: Inludes the DE/DE detetion as well as the DE-FE ontat

detetion detailed in hapter 3.

2. Evaluation of Fores: On the DE side, the fores to onsider are the same, plus

the ontat fores oming from the DE-FE interation. On the FE side, the DE-

FE ontat fores ontribute to the external fores involved in the solid mehanis

problem to be solved (setion 4.2).

3. Integration of Motion: Eah problem, DEM and FEM, is solved in parallel

normally using the same time integration sheme and time step. This is disussed

in setion 4.4.

4.2 Nonlinear FEM for Solid Mehanis

The purpose of this setion is to brie�y introdue the basi onepts onerning the

theory of the �nite element solution to the solid mehanis problems that will be used

along the hapter. The formulation used is the one presented in the book Nonlinear

Finite Elements for Continua and Strutures from T. Belytshko [10℄. Further referenes

on this topi are [9, 19, 22, 129, 142, 151℄.
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4.2.1 Kinematis

A ontinuum medium is assumed to be formed by an in�nite amount of partiles (ma-

terial points) whih have di�erent position in the physial spae during its movement

along time. Consider a body at the initial time t = 0, the initial on�guration Ω0 is

then, the set of positions that the material points oupy in the spae. Similarly, the

spatial or deformed on�guration Ωt is de�ned by the positions of the body at a spei�

time t > 0 (�g. 4.1).

Figure 4.1: Initial and deformed on�gurations of a body

The vetor de�ning the position of a partile P in the referene on�guration, X, is

de�ned in the orthonormal base e of an inertial frame as:

X = X1e1 +X2e2 +X3e3 (4.1)

while the position vetor in the spatial on�guration is expressed in the same base as:

x = x1e1 + x2e2 + x3e3 (4.2)

The motion of the body is desribed by the funtion φ(X, t) that maps eah partile P

labelled by X to its urrent position x at time t:

x = φ(X, t) with X = φ(X, 0) (4.3)

The inverse map is also de�ned:

X = φ−1(x, t) (4.4)
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The desription of any quantity ̺ of the partiles in the ontinuum an be done either

in the Lagrangian (material) desription, where the evolution over time of the quantity

̺(X, t) is studied following a �xed material point X, or in the Eulerian (spatial) de-

sription, where ̺(x, t) desribes the evolution over time of the quantity at a �xed point

of the spae x. The dependene on X or x in the quantities will be dropped for brevity.

The displaement of a material point its given by the di�erene between the its urrent

position and its original position:

u := φ(X, t)− φ(X, 0) = x−X (4.5)

and the veloity and aeleration are the �rst and seond material time derivatives

1

of

the position.

v :=
∂φ(X, t)

∂t
=

∂u(X, t)

∂t
= u̇ (4.6a)

a :=
∂v(X, t)

∂t
=

∂2φ(X, t)

∂2t
=

∂2
u(X, t)

∂2t
= ü (4.6b)

Measure of strain

The deformation gradient is de�ned as:

F :=
∂φ(X, t)

∂X
=

∂x

∂X
= x⊗∇0 (4.7)

being ∇ :=
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

]T

and ∇0 :=
[

∂
∂X1

, ∂
∂X2

, ∂
∂X3

]T

. Tensor F an be interpreted

as the operation that transforms a given in�nitesimal segment line dX in the initial

on�guration to its ounterpart dx in the deformed on�guration:

dx = F · dX (4.8)

The determinant of F is alled the Jaobian of the transformation and is denoted by

J .

J = det(F ) (4.9)

1

Material time derivative entred in a material point X reads:

d̺(X,t)
dt = ∂̺(X,t)

∂t whereas, when

entred on a spatial point x, it reads:
d̺(x,t)

dt = ∂̺(x,t)
∂t + v(x, t) · ∇̺(x, t)
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Introduing the displaement gradient H := ∂u/∂X the following relation arises:

F = 1+H (4.10)

The theorem of polar deomposition states that for a given seond order tensor F

with positive determinant detF > 0 exists an orthogonal tensor R and two symmetri

tensors U and V suh that:

F = R ·U = V ·R (4.11)

Exploiting this property, the right Cauhy Green tensor an be de�ned as a measure

that is invariant of a rotation R:

C := F T · F = U ·RT ·R ·U = U 2
(4.12)

where the orthogonality of R has been applied (RT ·R = 1).

Let's analyse now the ase of rigid body motion (no streth) whih onsists on a rotation

omposed by a translation, i.e x = R ·X + xt. The deformation gradient F aording

to equation 4.7 is F = R and therefore the right Cauhy Green (eq. 4.12) yields

C = RT · R = 1. Sine a meaningful strain tensor should vanish under rigid body

motions, where no strethes and therefore no strains appear, the Green-Lagrange strain

tensor is introdued:

E :=
1

2
(F T · F − 1) =

1

2
(C − 1) (4.13)

Where the fator 1/2 is added for the ompatibility with the small deformation theory.

The Green Lagrange tensor expressed in terms of the displaement gradient (eq. 4.10):

E :=
1

2
(H +HT +HT ·H) (4.14)

The small theory tensor is reovered by negleting the seond order terms in equation

4.14:

ǫ :=
1

2
(H +HT ) =

1

2
(u⊗∇0 +∇0 ⊗ u) (4.15)



108 Combined DE-FE Method for partile-struture interation

Measure of stress

The fores ating in a body an be summarized as: body fores b, fores per unit mass in

the body domain Ω; and surfae trations t, fores per unit area ating on the boundary

Γ (�gure 4.2):

F(t) =

∫

Ω

ρ b(x, t) dΩ+

∫

Γ

t(x, t) dΓ (4.16)

Figure 4.2: Fores ating on a body

The Cauhy's stress theorem relates the trations t to a stress measure σ, denoted

Cauhy stress, projeted in the unit normal n of the di�erential surfae dΓ:

n · σ dΓ = t dΓ = dF (4.17)

The ounterpart of equation 4.17 in the referene on�guration Ω0 impliitly de�nes

the nominal stress P :

n0 · P dΓ0 = t0 dΓ0 = dF0 (4.18)

And the Seond Piola-Kirhho� stress S is de�ned:

n0 · S dΓ0 = F−1 · t0 dΓ0 (4.19)
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4.2.2 Conservation equations

The basi equations that have to be satis�ed by every physial system in the ontinuum

mehanis theory are:

1. Conservation of mass

2. Conservation of linear momentum

3. Conservation of angular momentum

4. Conservation of energy

Conservation of mass

The mass m of a material domain Ω is an extensive property given by:

m =

∫

Ω

ρ(X, t) dΩ (4.20)

The priniple of onservation of mass reads: "the mass ontained in a ontinuum (and

in any material domain) is always the same".

This ondition translates mathematially in:

dm

d t
=

d

d t

∫

Ω

ρ(X, t) dΩ = 0 (4.21)

The material time derivative of an integral is solved applying the Reynolds theorem:

d

d t

∫

Ω

f dΩ =

∫

Ω

(

d f

d t
+ f∇ · v

)

dΩ =

∫

Ω

(

∂f

∂ t
+∇ · (vf)

)

dΩ (4.22)

Equation 4.21 is then written as:

∫

Ω

(

d ρ(X, t)

d t
+ ρ(X, t)∇ · v

)

dΩ = 0 (4.23)

The loalitzation priniple in ontinuum mehanis allows onverting an integral ex-

pression into a di�erential expression:

d ρ(X, t)

d t
+ ρ(X, t)∇ · v = 0 (4.24)



110 Combined DE-FE Method for partile-struture interation

Conservation of linear momentum

The linear momentum balane priniple states: "the resultant of all the fores ating on

a material volume in a ontinuum medium is equal to the rate of hange in its linear

momentum".

This an be expressed ombining equation 2.85a with equation 4.16:

d

d t

∫

Ω

ρv dΩ =

∫

Ω

ρ b(x, t) dΩ+

∫

Γ

t(x, t) dΓ (4.25)

On the left hand side of the equation the Reynolds theorem is diretly applied (eq.

4.22) together with the onservation of mass (eq. 4.24) yielding:

d

d t

∫

Ω

ρv dΩ =

∫

Ω

[

ρ
dv

d t
+ v

(

d ρ

d t
+ ρ∇ · v

)]

dΩ =

∫

Ω

ρ
dv

d t
dΩ (4.26)

The seond term of the right hand side is onverted into a volume integral in two steps:

First, the Cauhy relation (equation 4.17) is invoked and then, the Gauss divergene

theorem is applied:

∫

Γ

t(x, t) dΓ =

∫

Γ

n · σ dΓ =

∫

Ω

∇ · σ dΩ (4.27)

Substituting eq. 4.26 and eq. 4.27 into eq. 4.25:

∫

Ω

(

ρ
dv

dt
− ρb−∇ · σ

)

dΩ = 0 (4.28)

and �nally, the di�erential form is:

ρ(ü− b)−∇ · σ = 0 (4.29)

Conservation of angular momentum

The angular momentum onservation implies that "the hange in time of angular mo-

mentum with respet to a point is equal to the sum of all torques steaming from external

volume and surfae fores with respet to that point".

The orresponding equation based on an arbitrary point O reads:
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TO =

∫

Ω

rO × ρv dΩ (4.30)

It an be proved [10℄ that the impliations of this balane priniple leads to the state-

ment that the stress tensor σ is symmetri:

σT = σ (4.31)

Conservation of energy

The priniple of energy onservation reads: "the rate of hange of total energy in a body

is equal to the work done by the body fores and surfae trations plus the heat energy

delivered to the body by the heat �ux and other heat soures".

The energy balane has the following terms:

W int +W kin = W ext +W heat

(4.32)

Where W int

is the hange of internal energy, W kin

the rate of hange of kineti energy,

W ext

is the power exerted by the body and surfae fores and �nally W heat

is the power

supplied by the heat soures. In this thesis the problem is simpli�ed and the thermal

e�ets are negleted yielding the following expression:

d

dt

∫

Ωt

ρwint dΩ+
d

dt

∫

Ωt

1

2
ρv · v dΩ =

∫

Ωt

v · ρb dΩ +

∫

Γt

v · t dΓ (4.33)

In the ase of a pure mehanial problem the solution is ahieved without the employ-

ment of this equation. The expression will be useful, however, as a measure of energy

in setion 4.4.2.

4.2.3 Constitutive models

The onstitutive models de�ne the material behaviour through relations that typially

link the strains to the stresses. The models employed in the framework of this thesis

are large deformation linear elastiity, hyper-elasti models and J2 plastiity.
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Linear elastiity

The extension of linear elastiity to large deformation framework is by means of the so-

alled Kirho� material onstitutive model. It applies to problems with large rotations

but small deformations.

The relationship between strain and stresses is linear through the fourth-order onsti-

tutive elasti tensor C:

S = C : E (4.34)

where C(E, ν) depends only on the Young's modulus E and the Poisson's ratio ν whih

are the elasti properties of the material. The strain energy per volume for the linear

elasti ase is given by:

w

int =
1

2
E : C : E (4.35)

Hyper-elastiity

Hyper-elasti materials are haraterized by the existene of a strain energy funtion

that is a potential for the stress:

S = 2
∂w(C)

∂C
(4.36)

A onsequene of the existene of a stored energy funtion is that the work done on a

hyper-elasti material is independent of the deformation path. The work done by the

internal fores is diretly given by the potential of energy de�ning the model. In the

ase of a Neo-Hookean material:

w

int =
1

2
λ(ln J)2 − µ lnJ +

1

2
µ(trC − 3) (4.37)

where λ and µ are the Lamé onstants de�ned by:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(4.38)
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The stresses expressed in the Seond Piola-Kirhho�S and the Cauhy stress σ measure

respetively read:

S = λ lnJ C−1 + µ (1−C−1) (4.39a)

σ = λ J−1 ln J 1+ µ J−1 (b− 1) where b = FF T
(4.39b)

Further details in [10, 13, 22, 142℄.

J2 Plastiity

The theory of plastiity pursues to model materials whih exhibit permanent strains

(plasti deformation) upon unloading. The model used in this work is the J2 hyper-

elasti plastiity model. The model introdues a split of the strains in its elasti and

plasti part in a multipliative manner:

F = F e · F p
(4.40)

The elasti part is modelled with an hyper-elasti model as previously introdued. The

plasti deformations aumulate when a ertain threshold in stresses is overpassed whih

is modelled by a yield surfae:

f(S, q) = σc − σY (ǫ) = 0 (4.41)

In the above, σY is the yield stress whih is a material parameter. On the other hand

σc is the measure of stress used hek whether the material is inside the yield surfae

(elasti regime) or outside (plasti regime). In the �rst ase, no plasti deformation is

aumulated. In the latter ase, a return mapping to the admissible region is needed.

The measure is de�ned based on the von misses riterion:

σc =

√

3

2
J2 =

√

3

2
σdev : σdev

(4.42)

The measure of stress and also the internal variables ontrolling the evolution of the

yield surfae and the possible modi�ation of the elasti behaviour (hardening) are

driven by funtions whih depend on the deviatori stresses: σdev := σ− 1
3
(tr(σ)1). For

further details on this model see [10, 75, 114℄.
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4.2.4 Finite Element disretization

The equations governing the problem of the motion of a ontinuous body oupying a

domain Ωt at time t under mehanial fores are:

ρ(ü− b)−∇ · σ = 0 ∀x ∈ Ωt (4.43a)

n · σ = t̂ ∀x ∈ Γtσ (4.43b)

u = û ∀x ∈ Γtu (4.43)

u(t = 0) = u0, u̇(t = 0) = v0 ∀x ∈ Ω0 (4.43d)

Γtu is where the solution presents some presribed values û known as Dirihlet bound-

ary onditions, whereas Γtσ is the part of the boundary where the so-alled Neumann

boundary onditions, i.e. presribed trations t̂, are applied. u0 and v0 are the initial

states of the displaement and its �rst derivative. These equations together with the

onstitutive model of the material (setion 4.2.3) and the kinemati relations (setion

4.2.1) onstitute the statement of an initial boundary value problem. The analytial

solution of the problem for the unknown u(x, t) an not be obtained in general and

ommonly an approximate numerial solution is sought by appliation of the Finite El-

ement Method. The purpose of this setion is to highlight the basi expressions that

yield to the FEM solution. Dediated texts [9, 10, 151℄ should be addressed for a more

omprehensive understanding of the topi.

The weak form

The set of equations 4.43 onstitute the so-alled strong form of the problem. The FEM

solution is based on the weak form of the problem whih is gained by the integration of

the momentum equation multiplied by a test funtion in the form of virtual displaement

δu suh that vanishes on the Dirihlet boundary Γtu:

∫

Ωt

([ρ(ü− b)−∇ · σ] · δu) dΩt = 0 ∀x ∈ Ωt (4.44a)

δu = 0 ∀x ∈ Γtu (4.44b)

After integrating by parts and applying the Gauss divergene theorem (eq. 4.27), the



Nonlinear FEM for Solid Mehanis 115

Cauhy's stress theorem (eq. 4.17), the Neumann boundary ondition (eq. 4.43b) and

the kinematial admissibility of the virtual displaement (eq. 4.44b), the weak form of

the equilibrium is obtained:

∫

Ωt

ρü · δu dΩt +

∫

Ωt

σ : (δu⊗∇) dΩt =

∫

Ωt

ρb · δu dΩt +

∫

Γt

t̂ δu dΓt (4.45)

Disrete form

The urrent domain Ωt is subdivided into elements Ωe so that Ωe ≈ ∪ne

e=1Ωe. The nodal

oordinates of the elements are denoted xI where I ∈ [1, nN ]. In the �nite element

method, the motion u(x, t) is approximated by:

u
h(x, t) =

nN
∑

I=1

NI(x)uI(t) (4.46)

where NI(x) are the shape funtions that interpolate the solution on the disretized

�eld from the values at the nodes uI . The shape funtions must ful�ll the partition of

unity at any point x, i.e,
∑nN

I=1NI(x) = 1. In this work, the 4-nodded tetrahedra and

the 8-nodded hexahedra displaement elements are used.

The veloities and aelerations are obtained by taking the �rst and seond material

time derivative of the displaements, giving:

u̇
h(x, t) =

nN
∑

I=1

NI(x)u̇I(t) (4.47a)

ü
h(x, t) =

nN
∑

I=1

NI(x)üI(t) (4.47b)

The Galerkin solution employs the same shape funtions to the approximation of the

virtual displaements:

δuh(x, t) =

nN
∑

I=1

NI(x)δuI(t) (4.48)

By inserting the approximation funtions into the weak form we obtain a disrete prob-

lem:
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nN
∑

I=1

δuT
I

[
∫

Ωt

ρühNI dΩt +

∫

Ωt

B
T
I σ dΩt −

∫

Ωt

ρbNI dΩt −
∫

Γt

t̂NI dΓt

]

= 0 (4.49)

where the matrix BI inludes all the spatial derivatives of the interpolation funtions

NI . Sine the virtual displaement introdued is arbitrary, equation 4.49 has to be

ful�lled for arbitrary nodal values δuI . Therefore, eah term in brakets has to vanish

separately yielding a set of nN non-linear di�erential equations that an be expressed in

matrix form:

Mü+ f
int = f

ext
(4.50)

Where M is known as mass matrix, f
int

is the vetor of internal fores and f
ext

the

vetor of external loads. ü is the vetor ontaining all nodal aelerations. The integrals

in equation 4.49 are split into sums of integrals over eah element Ωe, whih are usually

evaluated by means of a Gauss integration rule.

4.3 DE-FE Contat

The two domains, FEM and DEM, are alulated separately and their ommuniation is

through ontat fores. The �nite element mesh represents a moving boundary for the

partiles; one a ontat is deteted, i.e., there is some interpenetration between a parti-

le and a �nite element, the penalty method determines the ontat fores on the "DEM

side" that will be later transmitted to the "FE side". An alternative to this approah is,

for instane, the so alled pinball method [11℄ whih embeds spherial partiles onto the

surfae FEs in order to diretly detet and haraterize the ontats in a DE/DE fashion.

In this work, the Double Hierarhy Method (setion 3) is used as a ollision detetion

method whih haraterizes and learly de�nes how to evaluate the fores in a wide

range of situations involving spherial partiles and planar triangles or quadrilaterals.

In a mesh �ne enough it would be possible to simulate the loal deformation of the

solids by simply applying a relatively high penalty parameter. However, that sale an

not be simulated in general, due to the amount of elements required for a single ontat.
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Therefore the loal deformations of the partile and solid involved in the ontat will

be modelled with the ontat model instead. The details on the ontat laws to be

used were desribed in setion 2.5.3. The ontat model seleted for the examples is the

HM+D model.

The external fores that at on a solid, as desribed in setion 4.2.1, are omposed by

body fores b(x) and surfae trations t(x). The part of the surfae trations whih

ome from the interation with the partiles through ontat are determined by means

of the DE method. In a seond step they are ommuniated from the DEs to the FE

nodes. Two di�erent methods regarding the ommuniation of fores are desribed in

this hapter: the diret interpolation method (setion 4.3.1) and the Area Distributed

Method or shorter, ADM (setion 4.3.3) whih has been speially developed to overome

the problems that the diret interpolation method presents, desribed in setion 4.3.2.

4.3.1 Diret interpolation

The idea is developed for the illustrative ase of a �at 2D surfae where, for sake of

larity, the trations will be identi�ed by a salar normal pressure p(x) (�gure 4.3). The

notation for the domain of the surfae elements will be Ωe.

Figure 4.3: Area of ontat and pressure of a sphere in ontat with two FEs

Virtual work equilibrium is established between the evaluated ontat pressure and the

interpolated fores on the FE nodes.
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δW int = δW ext
(4.51a)

nN
∑

i=1

Fi δui =

∫

Ω

p(x) δu(x) dΩ (4.51b)

We assume that the normal virtual displaement �eld δu(x) is approximated in the

spae of the FE disretization δuh(x) ≈
nN
∑

i=1

Ni(x) δui while we let the pressure p(x) be

a analytial salar disontinuous funtion that will not be interpolated by the FEs:

nN
∑

i=1

Fi δui =

∫

Ω

p(x)

nN
∑

i=1

Ni(x) δui dΩ (4.52)

Now, an expression for every single node in the FE mesh an be obtained:

Fi =

∫

Ω

p(x)Ni(x) dΩ (4.53)

The integral over the whole domain an be split into the di�erent �nite elements:

Fi =
ne
∑

e=1

∫

Ωe

p(x)Ni(x) dΩ (4.54)

For the partiular ase of assuming onentrated fores Fp at one point xPc, the pressure

an be expressed as a Dira delta funtion, as the work of Mihel [80℄ desribes:

p(x) = Fp · δD(x− xPc) (4.55)

Plugging this into equation 4.54 yields:

Fi =
ne
∑

e=1

∫

Ωe

Fp · δD(x− xPc) ·Ni(x) dΩ (4.56)

Sine the integrand of the Dira delta is only non-zero in xPc, the integral will vanish

in all the elements exept for the one in whih the point of ontat xPc is loated.

This is the ase of the element labelled

e©1
in �gure 4.3. Di�erently, the integral in
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the element labelled

e©2
is zero regardless of the fat that it has intersetion with the

partile. Equation 4.56 translates into:

Fi = Ni(xPc) · Fp (4.57)

Figure 4.4: Point fore and the area disriminants de�ning the triangle's shape funtions

This yields to the diret interpolation approah presented by the early works of Horner

[49℄ in whih the external fores due to ontat on eah node are simply determined by

the respetive nodal shape funtion weights (setion 3.4.1) times the evaluated point

fore Fp. This solution ensures the equilibrium of fores and torques with respet to any

point. The simple ase of a linear triangle is depited in �gure 4.4.

Nakashima and Oida [91℄ in simulations of soil-tire interation, Mihael [80℄ for snow-

tire and Oñate and Rojek [95℄ in rok-tool interation are some of the authors whih

have also adopted this method for the ommuniation of the ontat fores involving de-

formable strutures. However, as next setion 4.3.2 reviews, this method does not meet

the requirements of Hertz-Mindlin theory in regions of ontat whih are non smooth

and they an lead to instabilities. Even if the evaluation of the fores is well determined

on the "DE side", the fat that it onentrates the ontat fore in one point is a lear

disadvantage in terms of auray on the "FE side".

Having said that, the diret interpolation of fores using the H2
method (or any of the

reviewed methods in setion 3.1) an still be reasonable in ases where the size of the

DEs is relatively small ompared to the size of the deformable FEs and the penetration is

negligible ompared to the DEs radius, i.e., assuming small deformations (�gure 4.5(b)).
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(a) A spherial partile olliding several FE (b) Many small partiles olliding large FEs

Figure 4.5: Situations with di�erent relative size ratio DE-FE

In general, situations where detailed FE analysis of strain and stress is onduted or

simply when the ontat is to be orretly determined, more aurate shemes should

be used. Han et al. [44, 45℄, Munjiza [86℄, Wellmann [136℄, among others, present some

algorithms to that end. In this dissertation a new method is proposed whih is based

on the distribution of the ontat fores determined on the "DE side" to all the FE

involved in the ontat. The method will be denoted Area Distributed Method and is

presented in setion 4.3.3.

4.3.2 Non-smooth ontat

The HM+D is based on the Hertz-Mindlin theory [47, 81℄ whih is developed for ase

of ontat of bodies that present smooth surfaes with a unique normal. Contrarily, In

the DE-FE ontat, plenty of non-smooth regions are enountered. The appliation of

these type of ontat laws simply represents an heuristi model whih tries to satisfy

some basi onditions as it was desribed in setion 3.4, namely, onservation of energy

and avoidane of fore disontinuities. Some of the situations that an result in non-

ompliane of the above are the following:

• Arti�ial introdution of boundaries: Imagine the partile in �gure 4.6 sliding

from one FE to the next one. Sine the ontat method allows the introdution

of ertain interpenetration, the edge onneting elements 1 and 2 would suppose

a barrier if no additional assumptions are made. This problem is solved by the

simple introdution of the hierarhy between entities (setion 3.4.1).
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Figure 4.6: Partile moving aross two quadrilateral elements

• Disontinuity in tangential fore: Similarly to the previous example, when

a partile rosses from one element to the next, the tangential fores should be

orretly transmitted, sine they are normally alulated in a inremental manner.

In setion 3.5.2 a speial implementation that solves this problem is given.

• Multi-ontat: Figure 4.7 shows two disretizations of the same situation whih

should yield the same result. To do so, an elimination proedure should determine

properly whih are the entities to be ignored and whih are the relevant ones. Dif-

ferently from the lassial hierarhy based algorithms, the H2
method is apable

to distinguish orretly those situations as desribed in setion 3.4.2.

(a) Contat with planes disretized by many

small FEs

(b) Contat with planes disretized with one

quadrilateral element

Figure 4.7: Partile olliding two boundaries with di�erent FE disretizations
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• Non-smooth evolution of normal fores: A deformable solid under ontat

will evolve in time resulting in di�erent ontat status. Figure 4.8 depits a ase

in whih the lassial DE-FE methods (inluding H2
) will determine one ontat

fore (F
t1 = f(kn, δ) · n) in the �rst situation, but two ontat fores of similar

magnitude (F
t2 = f(kn, δ1) · n1 + f(kn, δ2) · n2)) in the seond situation, leading

to a sudden inrease of the fore.

(a) Contat at a time t1 (b) Contat at a time t2 > t1

Figure 4.8: Partile olliding a plane of a deformable body

The H2
method has been speially devised to give a simple and robust solution to

the above-mentioned problems in ase of ontat with rigid strutures. In the ase of

deformable strutures, however, the problem of the non-smooth evolution of the normal

fores takes speial importane and it may yield to instabilities in the alulation of the

solid. To overome this problem the Distributed Area Method is introdued next.

4.3.3 Area Distributed Method

An improvement to the diret interpolation is suggested here whih tries to give bet-

ter quantitative results to the overall ontat simulation involving partiles simulated

by DE and strutures or solids alulated with FE and the problems that the diret

interpolation method presents. The basi idea of the method is developed followed by

examples whih prove its superiority against the diret interpolation and validate the

proedure. The implementation details of the algorithm an be found in Appendix B.

Derivation of the method

The point of departure is equation 4.54, where instead of introduing a point load, the

interation fores are left as a distributed pressure (�gure 4.9).
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Figure 4.9: Pressure funtion and entroid of the pressure on the intersetion between

a DE and a FE

The entroid x̄
p
e of the ontat region in a given element weighted by the pressure

distribution is determined as follows (�gure 4.9):

x̄
p
e =

∫

Ωe

p(x) · x dΩ

∫

Ωe

p(x) dΩ
(4.58)

If the position x is interpolated by the shape funtions, it is easy to see from equation

4.58 that the following holds:

∫

Ωe

p(x)Ni(x) dΩ =

∫

Ωe

p(x)Ni(x̄
p
e) dΩ (4.59)

Now plugging this bak to equation 4.54:

Fi =

ne
∑

e=1

Ni(x̄
p
e)

∫

Ωe

p(x) dΩ (4.60)

The fores in a node Fi an be expressed as the ontribution of the fores from every

element ontaining that node:

F e1
i + F e2

i + . . . = Ni(x̄
p
1)

∫

Ω1

p(x) dΩ+Ni(x̄
p
2)

∫

Ω2

p(x) dΩ+ . . . (4.61)

Finally, the partial nodal fore ontribution from a given element is:

F e
i = Ni(x̄

p
e)

∫

Ωe

p(x) dΩ (4.62)
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The expression obtained an be regarded as a generalitzation of the diret interpolation

(equation 4.57). It suggests that the ontat fore ontribution from eah element should

be distributed among its nodes weighted up by the shape funtions Ni(x̄
e
p) evaluated on

the entroid of the pressure distribution on the element.

The expression for the pressure between two bodies in ontat given by the Hertzian

theory [47℄ is:

p(r) = p0
√

1− (r/a)2 (4.63)

Where r is the distane from the entral point of ontat, p0 the maximum pressure

and a the radius of the irular ontat area. Further details are given in Appendix A.

Integrals of the pressure funtion an be ahieved with by numerial integration in

a mortar-like [102℄ fashion with a su�ient number of integration points in order to

apture the intersetion regions and its orresponding entroids suh as the one depited

in �gure 4.9. What is suggested here instead, is to approximate the pressure as a uniform

funtion (�gure 4.10) ating on the intersetion surfae. The value of the pressure is

simply determined as the total fore divided by the total intersetion area ph = F/AT

ensuring that the total integral oinides with the one of the Hertzian theory.

Figure 4.10: Hertz pressure distribution and its uniform approximation

Equation 4.62 then simpli�es to:

F e
i = Ni(x̄

p
e)

∫

Ωe

p(x) dΩ ≈ Ni(x̄
p
e)

F

AT
Ap

e (4.64)

Ap
e are the intersetion regions between the partile and the surfae elements and x̄

p
e are

their respetive entroids. Note that the ase of AT = πa2 happens only in ase of full
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planar intersetion. In general, the real intersetion area will be AT 6= πa2 and the way

to orretly determine it is AT =
∑ne

e=0A
p
e. Finally, the ontat fores are assembled

on the nodes aounting for the ontribution from every element ontaining the node in

question:

Fi =
∑

e

F e
i (4.65)

For the ase of linear triangles the intersetion areas Ap
e and the entroids x̄

p
e an be

analytially determined in an easy and heap way whih is detailed in Appendix C. The

extension of linear triangles to quadrilaterals or higher order elements is disussed in

setion 4.3.3.

In a ase with multiple ontats happening at the same time, this proedure applies

to every group of elements that form part of an entity with valid ontat. A system of

master elements and slave elements is determined using the H2
elimination proedure

(setion 3.4.2). The ontat fores evaluated on every master are distributed among

the slaves elements in funtion of their intersetion areas (see �gure B.2). Additionally,

the fores on every master are saled by the total amount of intersetion area that the

partile presents with the di�erent FEs. This way the ontat fores evolve smoothly

in the same way as the total area does and thus, the disontinuity problem presented

in setion 4.3.2 is solved. This proedure is fully desribed in Appendix B, dediated to

the implementation of this method.

The validation of the Area Distribution Method and its omparison against the diret

interpolation is performed through several examples in setion 4.4.2 and setion 4.5.1.

Extension to other elements

The presented method determines the normal ontat fores based on the interpene-

tration of the bodies, δ and distributes it based on the alulation of the intersetion

areas. This has been analytially resolved for the ase of 4-nodded tetrahedra whih

results in surfaes de�ned by linear triangles. In a general ase, with quadrati or higher

order elements, the analytial determination of the ontat intersetions beomes more

involved.



126 Combined DE-FE Method for partile-struture interation

Figure 4.11: Determination of the ontat point and normal in a non-planar surfae

Figure 4.11 shows the ase of a 4-nodded quadrilateral. nπ
is the normal at the pro-

jetion point Cπm
to the urved surfae πm

de�ned by the element

e©m
. The surfae is

desribed by the onvetive oordinates ξ and η. The ontat projetion (andidate to

ontat point) is determined by the minimization of the distane [141℄:

Cπm := x(ξ, η) | min
x(ξ,η)

‖Ci − x(ξ, η)‖ (4.66)

This an be translated into the solution of the system following system:

C i − x(ξ, η)

‖C i − x(ξ, η)‖ · ∂x(ξ, η)
∂ξ

= 0 (4.67a)

C i − x(ξ, η)

‖C i − x(ξ, η)‖ · ∂x(ξ, η)
∂η

= 0 (4.67b)

(4.67)

And the normal is:

n =
(∂x(ξ, η)/∂ξ)× (∂x(ξ, η)/∂η)

‖(∂x(ξ, η)/∂ξ)× (∂x(ξ, η)/∂η)‖ (4.68)

This requires the employment of a root-�nding tehnique whih makes, in general, the

problem muh more expensive. In any ase, the analytial determination of the areas

beomes impratial and numerial integration has to be employed. In order to avoid

this, an alternative is proposed here whih involves the subdivision of quadrilaterals, or
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any other super-linear elements, using linear triangles. Figure 4.12 shows the ase of

a 6-nodded triangle and a 4-nodded quadrilateral subdivided with six and four linear

triangles respetively. An extra interpolation node has been introdued in the entroid

xcm of the original geometries to reate the sub-triangles.

Figure 4.12: Possible subdivision of a 6-nodded triangle and a 4-nodded quadrilateral

into 3-nodded linear triangles

The sub-triangles T m
α substitute their parent entities

e©m
during the determination of

the intersetion areas and entroids. The total intersetion area Ap
e and the intersetion

entroid x̄
p
e are determined from the intersetion areas and entroids of its sub-triangles

using the basi omposition desribed in Appendix C through equation C.1. Afterwards,

the nodal fores are interpolated to the original parent elements' nodes by means of

the shape funtions as desribed in equation 4.64. This is the proedure used for the

examples involving hexahedra in this work.

4.4 Time integration

Both impliit and expliit integration methods are widely used in omputational solid

mehanis. The hoie is strongly dependent on the type of simulation of interest. It

is highlighted in the book of Belytshko et al. [10℄ that an expliit integration method

is advisable for dynami ontat problems where the high frequeny response is the

matter of interest. This is the ase of the ontat problem in whih the harateristi

ollision times are relatively small ompared to the simulation times. Furthermore, the

multiple ollisions of partiles with a struture happening along the simulation have to

be well aptured. Sine small time steps are required for the resolution of the ontat

between DEs and FEs, good auray an be ahieved using shemes that only perform
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one evaluation of fores per time step and are heaper than higher order shemes or

impliit shemes. The fat that no linearisation is needed is also a lear advantage as

previously disussed for the DE integration in setion 2.6. Another important outome

of the use of an expliit integration is the easier parallelization of the ode.

The implemented strategy is based on the expliit proedure desribed in the book by

T. Belytshko [10℄ under the name of Central di�erene method. It is algorithmially

idential with the Veloity Verlet sheme desribed for the disrete element method

whih turned to have a very good balane between auray and omputational ost

with very low memory requirements. The full desription of the algorithm an be found

in setion 2.6. The update of nodal veloities and displaements needs the expliit

determination of the aelerations ü
n+1

from equation 4.50 whih is rewritten here for

the updated time step n+ 1:

Mü
n+1 = f

extn+1 − f
intn+1

(4.69)

This an be aomplished without solving any system of equations provided the mass

matrix M is diagonal. Lumped mass matries will be used to ahieve so. Then, the

solution goes node by node and evolves with di�erent evaluations of time. The assembly

is performed nodally aounting for the ontribution of the internal fores and external

fores whih are assembled element by element. The ase of the ontat fores due to

the interation with the partiles has been detailed in setion 4.3.3 (equation 4.65).

4.4.1 Expliit sheme ritial time step

One of the notable disadvantages of expliit integration shemes, as mentioned in se-

tion 2.6, is their onditional stability. In a general situation, involving several partiles

interating with solids disretized by �nite elements, the time step should respet the

riterion determined in setion 2.6.4 regarding DE/DE and DE-FE interation as well

as the stability limits of the integration of the solid mehanis problem itself.

Similarly as for the DEM, the stable time step in the entral di�erenes sheme an be

approximated by the highest frequeny of the linearised system. For the ase of a mesh

of onstant strain elements with rate-independent materials it an be evaluated as:
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∆tcrit =
2

ωmax
≤ mine,k

2

ωe
k

= mine
le
ce

(4.70)

Where k is the oordinate index, le is a harateristi length of element, ce is the

wavespeed and α is a redution fator that takes into aount the non-linearities whih

destabilize the system; Belytshko [10℄ proposes a value ranging 0.8 ≤ α ≤ 0.98.

Rayleigh damping

The Rayleigh damping is the one implemented in the ode where the oupled DE-FE

proedure has been developed. The linear equations of motion for a damped system are:

Mü+Cu̇+Ku = f
ext

(4.71)

Where f
int

is expressed in funtion of a damping matrix C and a sti�ness matrixK (see

equation 4.50). A ommon hoie is to de�ne C as a linear ombination of M and K

so that the system an be diagonalized with the same eigenvetors as the undamped ase.

C = a1M+ a2K (4.72)

a1 and a2 (also known as α and β in the literature) are input parameters that usually

are alibrated to obtain a desired fration of the ritial damping ξ. It an be alulated

element-wise as:

ξk =
a1
2ωk

+
a2ωk

2
(4.73)

The new ritial time step an be derived in the same way as before for the new linear

system:

∆tcrit = maxk
2

ωk

(

√

ξ2k + 1− ξk

)

(4.74)
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4.4.2 Energy assessment

Unfortunately, there is not a well-de�ned methodology to aurately predit the time

step needed to be used in a oupled DE-FE simulation. There are many fators involved

suh as the integration sheme of eah of the methods, the harateristis of the simula-

tion, the ontat models used, the onstitutive modelling of the materials, et. On the

top of that, it has been shown for the DEM that the theoretial time stability of the

integration sheme does not su�e to ensure the overall stability (setion 2.6.4) and the

onept of Contat Resolution was employed.

On the other hand, it is ommon pratie to determine the sti�ness of the ontat kn

as a merely numerial penalty whih enfores the impenetrability ondition not intend-

ing to model the dynamis of the ontat. In those ases, the penalty is often seleted

in funtion of the assumable time step. In this setion the use of an energy hek is

proposed as a method to ensure the stability of the system from a global point of view.

If the time step is orretly seleted, the energy is expeted to be onstant along the

simulation (aounting for the dissipation terms); otherwise, if an inrease of energy is

deteted, the stability is not ensured and the time step should be redued.

The expression for the energy balane (4.33) an be used to derive a measure of energy

for the di�erent mehanisms involved in the problem. Using an expliit integration

sheme, the amount of energy at every time step an be approximated assuming that

all quantities are onstant within a time step:

Eint

FE

=

∫

Ωt

ρ∆wint dΩ (4.75a)

Ekin

FE

=

∫

Ωt

1

2
ρv · v dΩ (4.75b)

Ebody

FE

=

∫

Ωt

u · ρb dΩ (4.75)

where the supersripts denoting the time step have been omitted for larity. The work

done by the tration fores due to ontat are not aounted on the FE side, instead

they are easily evaluated on the DE side as ontat fores with every master. Now the

expressions of the all the energy involved in a system of partiles is detailed:
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Ekin

DE

=

nP
∑

i

(

1

2
mi ‖vi‖2 +

1

2
Ii ‖ω̇i‖2

)

(4.76a)

Ebody

DE

=

nP
∑

i

mi g
T
u (4.76b)

Where g is the gravity and Ii is the nodal inertia whih in ase of a sphere is a onstant

value for all referene frames. The elasti energy generated by the ontats will be

denoted Eont

. It will be alulated for every partile p ∈ nP in the system aounting

for all DE ontats j ∈ nC,DE and every FE ontat k ∈ nC, FE in the following way:

Eont =

nP
∑

i

(

1

2

nC,DE
∑

j

(UDE + FDE +DDE) +

nC,FE
∑

k

(UFE + FDE +DDE)

)

(4.77a)

The fator 1/2 in the partile ontat summation omes from the fat that in a full

partile loop the ontat between partiles i and j will be aounted twie. On the

other hand, the energy ontribution oming from the ontat between DEs and FEs will

be aounted just on the DE side, and therefore, the full energy has to be omputed.

The quantities U , F , D orrespond to the elasti, fritional and dissipative energy terms

that are omputed depending on the ontat model employed.

The omputation of the elasti energy is desribed here for the Hertzian ontat law

(setion 2.5.2) whih an be applied to both DE/DE and DE-FE ontat:

Un+1 = Un
n+1 + Ut

n +∆Ut
n+1

(4.78a)

Un+1
n =

∫ δn+1

0

Fn(δ) dδ (4.78b)

∆Ut
n+1 = ∆Fte ∆s (4.78)

The tangential part is alulated inrementally with the elasti tangential fore inre-

ment (equation 2.36) and the inremental displaement (equation 2.31a). Di�erently,

the normal elasti fore an be diretly evaluated by the integral expressed above sine

it is a onservative fore:
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Un+1
nHertz

=

∫ δn+1

0

Fn(δ) dδ =
2

5
kn δ

2
(4.79)

where kn is was de�ned in equation 2.38a.

Finally, the global balane of energy reads:

Eint + Ekin = Eext + E0 (4.80a)

Eint

FE

+ Ekin

FE

+ Ekin

DE

= Ebody

FE

+ Ebody

DE

+ Eont + E0 (4.80b)

Where E0 is an arbitrary initial energy.

4.5 Validation examples

The purpose of the following examples is to validate the desribed oupled proedure

together with the methodology developed for the ommuniation of fores from DE to

FE in the Area Distributed Method.

4.5.1 Impat on simply supported beam

A partile-struture interation aademial example is presented here whih onsists on

a spherial partile olliding a simply supported beam (�gure 4.13). Two di�erent ases

are reprodued here in order to assess the oupled DE-FE proedure. The referene

solution to this problem, earned from linear modal dynamis, was proposed by Timo-

shenko in 1951 [126℄ and is reviewed in [78℄.

Two examples are reprodued with the same parameters, in the �rst one the radius

is 0.01m and the length of the beam is 15.35m while the seond one has a partile of

0.02m of radius and a length of 30.70m for the beam. The material properties desribed

in [78℄ are summarized together with the simulation parameters in table 4.1. The �rst

ase produes a single impat while the seond yields to three of partile/beam impats.

The meshes used are 60 × 4 × 3 8-nodded elements respetively for the length, height

and depth in the �rst example and 120× 4× 3 in the seond example.
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(a) Front view (b) Side view

Figure 4.13: Simply supported beam hit laterally at its entre by a sphere

Table 4.1: Simulation parameters

Material properties DE FE Calulation parameters

Radius (m) 0.01/0.02 - Contat Law Hertzian

Density (kg/m3
) 7960 7960 DE-FE Model ADM

Young's modulus (GPa) 215.82 215.82 Initial vel. (DE) (m/s) [0.0,−0.01, 0.0]

Poisson's ratio 0.289 0.289 Gravity (m/s2) [0.0, 0.0, 0.0]

Restitution oe�. 1.0 - Time step (s) 1 · 10−8

Frition oe�. DE-FE 0.0 - Neighbour searh freq. 50

The results (�gure 4.14) are quite satisfatory sine the HM+D model simply de�ned

by the material properties is able to perfetly reprodue the ontat fores. One the

ontat �nishes, the beam osillates in a ombination of di�erent exited modes. The

largest frequeny mode, whih an be easily identi�ed in the �gures, orresponds to the

natural frequeny of the struture and it is perfetly mathed. The higher vibration

modes however, are not orretly aptured by the linear hexahedra elements available

in the ode, whih are not the best suited elements to simulate �exural modes. As a

onsequene of that, there is a deviation on the seond and third ontat events in the

seond example (�gure 4.14(b)).
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(a) Analytial solution versus the numerial ADM solution for the beam 1

(b) Analytial solution versus the numerial ADM solution for the beam 2

Figure 4.14: Results of the lateral impat of a sphere on a simply supported beam
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4.5.2 ADM vs Diret interpolation

A omparison is performed between the diret interpolation and the Area Distribution

Method using a oarser mesh of 10× 1× 1 hexahedra. The results for the ontat fore

predited by the ADM (�gure 4.15) are onsiderably aurate despite of the bad quality

of the mesh. The diret interpolation instead, yields to very inaurate results, as it

predits a sti�er ontat due to onsideration of a ontat fore with two planes as an

be seen in �gure 4.16. The e�et of the sudden hange in normal fore (setion 4.3.2)

an be learly seen in the results. It orresponds to the instant in whih the ontat

detetion goes from a ontat with a single edge to a ontat with two planes.
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Figure 4.15: Analytial solution versus numerial solutions for the diret and the dis-

tributed methods in a oarse mesh

Figure 4.16: Displaement at t = 0.12ms (deformation ×2000)
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4.5.3 Energy in a single DE-FE ollision

The two methods for the DE to FE ommuniation of fores are analysed from the

energy point of view in this example. The energy of an elasti ollision of a spherial

partile with a FE ube is reprodued here. A fritionless partile moves without gravity

towards the ube induing a normal ollision. The ube has its 4 inferior nodes �xed.

The ontat law used is the Hertzian ontat law and the onstitutive material model

for the solid is Neo-Hookean. The properties are summarized in the following table 4.2:

Table 4.2: Simulation parameters

Material properties DE FE Calulation parameters

Radius (m) 0.3 - Initial pos. (DE) (m/s) [0.0, 0.03, 0.0]

Density (kg/m3
) 2 · 103 1 · 103 Initial vel. (DE) (m/s) [0.0,−1.0, 0.0]

Young's modulus (Pa) 5 · 106 5 · 106 Gravity (m/s2) [0.0, 0.0, 0.0]

Poisson's ratio 0.2 0.2 Time step (s) 5 · 10−5

Restitution oe�. 1.0 - Neighbour searh freq. 1

Frition oe�. DE-FE 0.0 -

(a) Cube meshed by one hexahedron (b) Cube meshed by six tetrahedra

Figure 4.17: Sphere impats a ube
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The ube is meshed using one single hexahedron and six tetrahedra (�gure 4.17). The

latter ase presents again the problem desribed in setion 4.3.2 in whih the ontat

surfaes deform implying a ontat with two planes instead of the single plane ontat

that ours with the quadrilateral surfae of the hexahedron. The two ases have been

run using both the diret interpolation and the Area Distribution Method (ADM).
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(a) Diret interpolation with 8-nodded hexahedron
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(b) Diret interpolation with linear tetrahedra
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() ADM with 8-nodded hexahedron
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(d) ADM with linear tetrahedra

Figure 4.18: Diret interpolation and ADM behaviour omparison in a single ollision

The results show that all ases behave in a similar way exept for the diret interpolation

method using tetrahedra, whih presents a sti�er ontat (shorter duration) yielding to a

higher exitement of the solid ube. The distributed method instead, manages to apture

the same ontat time for the two disretizations. This is beause the intersetion area

is the one ontrolling the magnitude of the total fore, whih is pratially the same in

the two ases (�gure 4.18() and �gure 4.18(d)), regardless of how many ontat fores

at on the partile.
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Energy test in a multi DE-FE system

A �nal example is designed to hek the global onservation of energy of the oupled

DE-FE algorithm. All fritional and dissipation mehanisms have been disabled for sake

of simpliity and a purely elasti onstitutive law is used for the material desription

and for the ontat modelling.

(a) Simulation set-up (b) Displaement at time t = 23.4s. 2D view

() Displaement at time t = 23.4s. 3D view

Figure 4.19: Pendulum-like prism interating with several spherial DEs
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A prismati struture with a node �xed in one extreme osillates like a pendulum under

the ation of a gravity fore. Four spherial partiles are set in the domain whih have

ollision with the struture, among themselves, and with the rigid walls losing the do-

main (�gure 4.19(a)). The prism has been disretized with a mesh of 4× 4× 20 = 320

8-nodded hexahedra.

The test has been run using a Hertzian ontat law with a large deformation Neo-

Hookean model for the solid. The ADM has been used to interpolate the fores. The

parameters are summarized in the following table 4.3:

Table 4.3: Simulation parameters

Material properties DE FE Calulation parameters

Radius (m) 0.6 Gravity (m/s2) [0.0,−1.0, 0.0]

Density (kg/m3
) 1.5 ·103 1 · 103 Time step (s) 5 · 10−5

Young's modulus (Pa) 1 · 106 5 · 106∗ Neighbour searh freq. 1

Poisson's ratio 0.2 0.2 DE-FE ontat model. ADM

Restitution oe�. 1.0 -

Frition oe�. DE-FE 0.0 -

∗
The Young's modulus of the surrounding walls was set to E

wall

→ ∞.

The results (�gure 4.20) are obtained evaluating all energy terms in the system. Sine

the deformation and ollision regime is fully elasti and no fritional neither dissipative

fores are onsidered, the total amount of energy expressed by equation 4.81 should be

onstant along the simulation. For the presented results, E0 is set suh that total energy

ET = 0.

ET = Eint

FE

+ Ekin

FE

+ Ekin

DE

− Ebody

FE

− Ebody

DE

− Eont − E0
(4.81a)
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Figure 4.20: Total energy of the system

As the simulation evolves the behaviour turns more haoti. Sine there is no dissipa-

tion, the prism exites di�erent high frequeny vibration modes due to the ollisions in

di�erent positions and diretions. The overall energy keeps balaned as it was expeted.

The results validates the DE-FE oupling by means of the Area Distributed Method

and indiates that the time step seleted for this simulation is stable.
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4.6 DE-FE oupling �owhart

Figure 4.21: Basi �owhart of the oupled DE-FE for partile-struture interation





Chapter 5
DE model for ohesive material

Within the DEM, the individual partiles are modelled as sti� bodies whih interat via

ontat fores. This simpli�ation has the advantage of representing the ompliated

mirosopi behaviour by a simple system of linear equations based on a relatively small

number of parameters. In problems where large deformations and frature are involved

the DEM has attrative features in ontrast to ontinuum-based methods suh as FEM,

speially its naturally disontinuous behaviour. The main aspiration is to have a gen-

eral omputational method for uni�ed modelling of the mehanial behaviour of solid

and partiulate materials, inluding the transition from solid phase to partiulate phase.

It is agreed that the Disrete Element Method is a great tehnique to simulate the

disontinuous media as a system of independent partiles in dynami motion. How-

ever, regarding the simulation of ontinua, the lak of theoretial basis even for linear

elastiity has restrited its appliation. There have been, a large number of di�erent

approahes for this question: How should the ontat models be haraterized (miro

sale parameters) in order to resolve the maro sale ontinuum behaviour? The hal-

lenge in all DEM models is to �nd an objetive and aurate relationship between the

DEM parameters and the standard onstitutive parameters of a ontinuum mehanis

model, namely the Young modulus E, the Poisson's ratio ν and lear determination of

the stress and strain tensors and its onstitutive relations.

The de�nition of the miro parameters an be done globally with uniform values for

all interations between partiles or loally based on the properties of eah pair of par-
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tiles at its interation points. The �rst approah has been taken by several authors

[63, 95, 105℄ whih obtain the values orrelating numerial experiments and laboratory

tests or performing an adimensional analysis as is suggested in [50, 52℄. Alternatively,

the loal approah, tries to �nd a mehanial relationship between the miro and maro

parameters. It enompasses many di�erent interpretations for the de�nition of the DEM

parameters [29, 35, 46, 101, 120, 128℄.

Both of these approahes give DEM a phenomenologial harater whih relies on a al-

ibration proess in order to orretly determine the parameters that rule every spei�

problem. Generally, the results are dependent on the disretization and the auray is

far below that of ontinuum based methods. Alternatives to this are, on the one hand,

the use of a two sale or embedded DE-FE ombined method [85, 95, 146℄ in whih the

FEM is adopted in the ontinuum parts and the DEM is used when damage appears.

On the other hand, some alternative methods have been published whih use energy

equivalene priniples to model the inter-element laws laiming not to require alibra-

tion [83℄. These approahes are still not too widespread and require further development

to be adapted to non-linear problems with proper desription of failure.

In this hapter, spherial partiles are employed as disrete elements to model geoma-

terials, namely rok or onrete. To that end, a onstitutive model framed on the loal

approah, the DEMpak model [96℄, has been developed and it will be thoroughly de-

sribed in setion 5.2. Classial methods are used for the ontat detetion (setion 2.2)

with a speial treatment of the neighbours whih an have bonds whih are ohesive or

not and an handle initial gaps and interpenetration. The integration of the equations

of motions will be performed normally with the Veloity Verlet sheme, see setion 2.6.1.

After the disussion on general harateristis of the DE methods applied to simulate

ontinua and the presentation of the model, some basi numerial analysis are presented

to asses the behaviour of the method. Later on, a set of examples regarding the simula-

tion of laboratory tests on onrete speimens are presented; they have been run under

the developed Virtual Lab module (setion 6.1.4) whih is integrated in the DEMpak

ode (www.imne.om/dempak).



DEM as a disretization method 145

5.1 DEM as a disretization method

5.1.1 Simulation sale

The �rst aspet to deide is the relation between a disrete element in the simulation

and the physial partiles or media being modelled. The one-to-one approah has been

suessfully applied to problems whih lie in di�erent sales inluding simulations at the

atomisti level (�gure 5.1(a)) under the framework of moleular dynamis, to simula-

tions of granular matter, ranging from powder partiles (µm) to rok bloks (m).

The frature of geomaterials suh as rok or onrete our at the mesosale (mm),

generally in the interfaes between the aggregates and the paste (�gure 5.1(b)). At this

sale, a simple onrete laboratory onrete speimen of 15 m diameter and 30 m

height, involving �ne aggregates on the order of 500 µm, would require approximately

5 million one-to-one disrete elements.

(a) Crystalline miro-struture of ement (b) Detail of paste, agregate and voids in onrete

Figure 5.1: Two di�erent sales in onrete. Taken from: Google images

Sine this beomes impratial for appliations on real strutures, normally this is

done in a very small domain from whih, using multi-sale approahes, marosopi

onstitutive laws for a FE disretization an be derived. Alternatively the marosop-

ial approah an be taken. It involves the employment of larger elements in whih a

measurement is assumed to yield values whih are representative of the whole volume

modelled by the element disarding any disontinuity in the media that omposes it. In

this regard, the employment of DE as a disretization method to marosopially model

a ontinuum might lead to a ontradition. It is also debatable that, at this marosopi

sale, the simulation of fraturing using disrete elements an yield meaningful results

in the predition and traking and branhing of fratures.
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In this hapter, the DEMpak model is presented, whih attempts to simulate geo-

materials employing DEM as a disretization method at the marosopi level. Basi

numerial analysis and presentation are inluded in the hapter to support the disussion

on whether the method is adequate or not for this purpose.

5.1.2 Partition of spae

The �rst hallenge a DEM faes is the ful�lment of the partition of spae. The dis-

retization of the omplete volume of a body without the addition of extra volume

or the inlusion of voids is not feasible using spherial partiles or other similar DE

geometries.

Spheres paking

The meshes obtained when disretizing regular geometrial 3D objets suh as ubes,

prisms or ylinders with spheres having tangential ontat yield a lot of empty spae

left. The maximum density sphere paking that an be obtained for a regular mesh

omes from a distribution in the following manner:

Figure 5.2: So-alled ubi paking for spheres. Taken from: Wolfram Alpha

Starting with a layer of spheres in a hexagonal lattie, the next layer is plaed in the

lowest points you an �nd above the �rst one, and so on in the same way oranges are

staked in a shop. At eah step there are two hoies of where to put the next layer,

so this natural method of staking the spheres reates an unountably in�nite number
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of equally dense pakings, the best known of whih are alled ubi lose paking and

hexagonal lose paking. Eah of these arrangements has an average density of:

π

3
√
2
≈ 0.740480189 (5.1)

The Kepler onjeture states that this is the best that an be done, i.e, no other ar-

rangement of idential spheres has a higher average density.

The optimal (minimum) porosity obtained with partiles of the same radius is then in

the order of 25%. Higher ompatness obviously require the ombination of di�erent

sizes. However, a onsiderably large dispersion (small spheres in ontat with large

ones) yields obvious ounterparts in a DE simulation suh as ine�ient global searh

algorithms, heterogeneous ontat haraterization and limiting ritial times for the

expliit shemes.

Mesh generator

The disrete meshes that are used in DEMpak are generated using the sphere mesher

of GiD. It has to be pointed out that, sine the mesher has some imperfetions, gaps,

inlusions and some abnormal big or small partiles will be obtained. This has to be

taken into aount in the next setions to properly de�ne their properties in the model.

Figure 5.3: Cut view of a 3D sphere mesh with imperfetions generated by GiD

In setion 5.3, the explanation of how to deal with these imperfetions and how to

omplete the volume modelled an be found.
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5.1.3 Charaterization of bonds

The overall behaviour of a material an be reprodued by loally assoiating a simple

onstitutive law to eah ontat interfae. The interation between spherial elements i

and j with radius Ri and Rj is de�ned within an interation range whih is not always

a tangential ontat situation (Figure 5.4).

1− β ≤ dij
Ri +Rj

≤ 1 + β (5.2)

dij is the distane between the entroids of partiles i and j and β is the interation range

parameter in the initial on�guration. The equilibrium position is then de�ned inluding

gaps or indentations up to some tolerane ±β. In this work, the value of β = 0.15 was

hosen for the examples. By the introdution of the initial delta δ0 = ±β(Ri +Rj), the

initial distane dij an be simply written as:

dij = Ri +Rj + δ0 (5.3)

The handling of these non tangential ontats is further disussed in terms of the im-

plementation in setion 5.1.4.

Figure 5.4: De�nition of the ontat interfae bond

Every bond represents an interation region that aounts for some volume of the full

disretized domain. The interfae has an assoiated ontat area:

Aij = πR2
c (5.4)

Rc is taken in the DEMpak model as Rc = min(Ri, Rj). This hoie does not ensure
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however, that the representative volumes, here represented as ylinders, aomplish the

partition of unity. Instead, these volumes usually present overlapping between di�erent

ontat pairs whih, at the end, translates into an over-sti� system. The DEMpak

method suggests the employment of a orreted area:

Āij = αAij
(5.5)

with a global orretion orretion value α:

α = 40
P

Nc

(5.6)

where Nc and P are the average number of ontats per sphere and the average porosity

in the mesh. Eq.(5.6) has been dedued by de�ning the optimal values for the number

of ontats per sphere and the global porosity equal to 10 and 25%, respetively (see the

perfet paking of spheres in setion 5.1.2). Some analysis done with the model showed

that this orretion of areas is still mesh-dependent and has to be alibrated. In setion

5.3 a new area determination is proposed whih improves the DEMpak model in terms

of avoiding mesh-dependeny for the sti�ness haraterization.

5.1.4 Neighbour treatment in the ohesive model

A few details are given here on the implementation of a generi ohesive model using a

sphere mesh.

Initial indentation

The position of equilibrium for the ontats is set with their initial on�guration. The

initial status between the spheres is not always a tangential ontat and an involve

gaps or initial indentations up to some tolerane limit β to be de�ned for every mesh.

This has been depited in �gure 5.4. The initial distane of eah pair is stored as the

passive initial ontat status (equilibrium)

1

.

1

In a disontinuum ase, normally the initial indentations are eliminated before the simulation starts

to ensure tangential ontats.
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Cohesive groups

The model allows testing di�erent ohesive entities whih are meshed independently

with spheres. Eah of these entities may form an independent body with partiles inter-

onneted through bonds that typially an resist tension and shear. Several ohesive

entities, with the same material or with di�erent materials, an interat among them

and also with other disontinuum partiles in the model.

In terms of implementation in the DEMpak ode, the requisites for a ohesive bond to

be generated are:

• Partiles having an initial positive indentation or initial gap smaller than ertain

tolerane.

• Partiles belonging to a ohesive group (no disontinuum partiles).

• Partiles belonging to the same ohesive group (same body).

As a lari�ation example, �gure 5.5 shows a pillar and a foundation of onrete whih

onstitute two separate bodies identi�ed with two di�erent ohesive groups. The par-

tiles de�ning every group are ohesive sine the material is onrete. The ontats

between onrete partiles belonging to a di�erent group however, are non ohesive, and

a fritional ontat is de�ned. Finally the gravel surrounding the struture form part of

a third group whih is non ohesive.

Figure 5.5: Pillar and foundation of ement in a granular terrain. Example of the bonds

formed in eah of the di�erent ohesive groups
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Neighbour lists

In the DEMpak software the neighbouring partiles of a given DE are sorted in the

following way:

[Current neighbours℄ = [Initial neighbours℄ + [New neighbours℄

The initial neighbours array is �xed and only the new neighbours are updated at eah

time step. The initial list is formed during the initialization phase of the simulation with

the neighbours that meet the above-mentioned onditions forming a ohesive bond. The

initial neighbour array has two arrays assoiated to it, one array ontaining all the val-

ues for the initial indentations δ0 whih de�nes the equilibrium position with eah of

the initial neighbours and an array with an integer de�ning the failure status of every

ontat. The failure status is initialized with a value indiating that a ohesive bond

exists until failure ours and then hanges to a value ategorizing the type of failure

given by the onstitutive law, namely shear failure, tension failure, et.

The DEMpak onstitutive law applies diretly to the initial neighbours whih are still

ohesive. This permits simulating ohesive material with large deformations in whih

the large negative indentations ould not be traed by the neighbour searh algorithm.

On the other hand, the rest of the neighbours are treated as a disontinuum ontat as

desribed in hapter 2 and they need to be found regularly by the neighbour searh.

5.1.5 Cohesive models in linear elastiity

The main goal of using DEM in the simulation of ohesive materials suh as onrete

or rok, is reproduing its harateristi multi-fraturing pattern, as well as an aurate

determination of the strains and stresses whih they are subjeted to. The aspiration is

to have a general method for a uni�ed modelling of the mehanial behaviour of solids

and partiles, inluding the transition from the solid to the partiulate phase.

A neessary �rst step for the method to assess, is to reprodue the linear elastiity.

Unfortunately, there is not a diret unique general way to ahieve that. An example of

the state of the art for eah of the two approahes desribed in the introdution of the

hapter, namely the global and the loal approah, are brie�y reviewed in this setion.
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Dimensional Analysis - Global Approah

Huang [52℄ used dimensionless laws in order to estimate the mehanial behaviour of

an assembly of partiles under quasi-stati onditions. It is assumed that the problem

is governed by the following set of harateristis parameters: kn, kt, R̂, e, ρ, L, v;

where kn and kt de�ne the ontat sti�ness in normal and tangential diretions, R̂ is

an averaged radius, ρ the density, L is the sample length, v is the load veloity and e

the porosity of the assembly, as an indiret measure of the partile size distribution and

ontat density. Later, Yang et al. [144℄ showed that the porosity e may not be a good

index to represent the partile size distribution, and generalized the in�uene of the

partile assembly by a parameter Φ summarizing di�erent mesh e�ets suh as partile

size distribution, oordination number (average number of neighbours per partile), et.

Sine there are seven parameters and three independent dimensions, aording to the

Bukingham theorem four independent dimensionless parameters govern the elasti re-

sponse of the assembly:

{

kt
kn

,Φ,
R̂

L
,

v

√

kn/ρ

}

(5.7)

It is assumed that, if an enough number of partiles is onsidered, the ratio (r/L << 1)

an be ignored. The same an be assumed for the veloity, onsidering the ondition of

quasi-stati loading (v/
√

kn/ρ << 1). The dependene of the elasti onstants on the

miro-sale parameters an thus be redued to the following saling laws:

EL

kn
= ΨE

(

kt
kn

,Φ

)

, ν = Ψν

(

kt
kn

,Φ

)

(5.8)

Aording to the found saling laws, the marosopi elasti onstants E and ν are

ompletely determined if the normal and shear sti�ness are known for a given size

distribution of the partiles. This means that the relationship between the miro pa-

rameters kn, kt and the maro parameters only hold for a spei� assembly of partiles,

with a given on�guration, and an not be saled to a di�erent one. In other words, the

method is mesh dependent and needs alibration.
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This approah was also followed by Labra [63℄, obtaining the following results:

(a) Plot κ versus ν in 2D. Taken from: Labra [63℄

(b) Plot κ versus ν in 3D. Taken from: Labra [63℄

Figure 5.6: Poisson's ratio for di�erent values of κ in a UCS test on a onrete speimen

Labra found out that, for a given assembly, the kt/kn ratio is the main key to determine

the marosopial Poisson's ratio of the model. As it an be seen, there exists a limitation

on the maximum value of Poisson's ratio to the value of 0.25 in 2D ase and nearly 0.3

in 3D. Similar results are obtained in the alternative loal approah as it is shown next.

Regular assemblies - Loal Approah

An interesting study was perform by Tavarez and Plesha [120℄ with a loal de�nition of

the ontat parameters in a regular assembly of partiles. Their attempt was to theo-

retially establish the miro-maro parameters relationship for a given unit ell of the

material.

Figure 5.7 shows an isotropi solid material element (with known E and ν) subjeted

to uniaxial stress. The volume of material is then modelled using the DEM lose-paked
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Figure 5.7: Close-paked DEM unit ell for determination of inter-element spring on-

stants. Taken from: Tavarez and Plesha [120℄

unit ell with the loading shown in Figure 5.7. The unit ell ontains seven elements

having three degrees of freedom per element (two translations and one rotation). Due

to the symmetry of loading, all rotations in the unit ell are zero. Therefore, a matrix

equation for the 14 translational unknowns an be expressed in the form of:

K · u = f (5.9)

Expressing the sti�ness matrix K as a funtion of kn and kt and the geometry and

solving for a known ase with determined vetors f and u, the normal and tangential

elasti sti�ness for this assembly an be found:

kn =
1√

3(1− ν∗)
· E∗t , kt =

1− 3ν∗

(1 + ν∗)
· kn (5.10)

Where E∗
and ν∗

are E and ν for the 2D plane stress or E/(1 − ν2) and ν/(1 − ν)

respetively in plane strain ase.

Figure 5.8: DEM disretization and unit ell used in Tavarez and Plesha work. Taken

from: Tavarez and Plesha [120℄

The normal and tangential sti�ness obtained in numerial simulations by this method-
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ology is in total agreement with equations 5.10. Assuming the shear sti�ness must be

non-negative, it is interesting to note that these equations limit the maximum value of

ν to 1/3 for plane stress and 1/4 for plane strain. This results are in the same line as

the ones obtained by the dimensional analysis previously shown.

In general, both global and loal approahes require a alibration proedure for every

mesh in order to orretly apture the Young's modulus and Poisson's ratio. In the ase

of regular assemblies this is not neessary sine an analytial expression an be derived

for a given mesh; the disadvantage of this method however, is that the multi-frature

path is prede�ned by the mesh as well. In both reviewed methods the Poisson's ratio

is limited to maximum values of 1/4 and is mesh dependent. The aim of this hapter

is to analyse the DEMpak model, a loal approah using irregular meshes, whih aims

to model in �rst instane the linear elastiity problem for di�erent values of Young's

modulus and Poisson's ratio and later be able to simulate the failure of material. First

the desription of the model is presented followed by numerial analysis to asses its

propertites as a disretization method.

5.2 The DEMpak model for ohesive material

The haraterization of the onstitutive behaviour of a material in the DEM is through

one-dimensional non-linear relationship between fores and displaements at the ontat

interfaes. Standard onstitutive models for the ohesive DEM are haraterized by the

following parameters:

• Normal and shear sti�ness parameters kn and kt.

• Normal and shear strength parameters Fn and Ft.

• Coulomb internal frition angle and oe�ient φs and µs.

• Coulomb dynami frition angle and oe�ient φd and µd.

• Loal damping oe�ients cn, ct at the ontat interfae.

The rheologial model is exatly the same as the one presented in hapter 2 for the

disontiuum model (�gure 2.6). It has the peuliarity that now the bonds an work

both in ompression and tension. On the top of that, limiting values for the fores in
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both normal and shear diretion determine hanges in the ontat laws suh as breakage

of the bonds, plastiity, damage, et. After fully breakage of the bonds, the partiles

reover their original disrete fritional behaviour.

In this setion, the so alled DEMpak model for the analysis of onrete material will

be presented. The model, whih derives from the linear LS+D law (setion 2.5.1), has

been developed by Oñate et al. in [96℄ and implemented in the DEMpak software to

be used in engineering projets. It has been validated through the analysis of onrete

samples in several laboratory tests suh as the Uniaxial Compressive Strength (UCS)

test, triaxial tests and the Brazilian Tensile Strength (BTS) test. The results obtained

with that model ompare well with experimental data for the tests provided by the Teh-

nial University of Catalonia (UPC) for the onrete samples reported in Sfer et al. [112℄.

The DEMpak model, as other ohesive models, presents several limitations whih will

be brie�y reported here together with the proposal of a few possible improvements.

5.2.1 Elasti onstitutive parameters

Let us assume that an individual partile is onneted to the adjaent partiles by

appropriate relationships at the ontat interfaes between the partile and the adjaent

ones. These relationships de�ne either a ohesive bond or a fritional sliding situation

at the interfae.

Normal ontat fore

The normal fore Fn at the ontat interfae between partiles i and j is given by

F ij
n = σnĀ

ij
(5.11)

where σn is the normal stress (σn = niσijnj) at the ontat interfae and Āij
is the

e�etive area at the interfae de�ned in eq. 5.5.

The normal stress σn is related to the normal strain between the spheres, εn, by a

viso-elasti law as:

σn = E εn + c ε̇n (5.12)
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where the normal strain and its rate an be expressed:

εn =
un

dij
, ε̇n =

u̇n

dij
(5.13)

Combining equation 5.13 and 5.12 into equation 5.11, the normal fore-displaement

relationship at the interfae between partiles i and j is dedued as:

F ij
n =

Āij

dij
(Eun + cu̇n) = knun + cnu̇n (5.14)

In this expression, the onept of the indentation δ is generalized to the displaement

un whih an be positive (tension) or negative (ompression). Substituting eqs. 5.5 and

2.19 into 5.14 we �nd the expression of the sti�ness and visous (damping) oe�ients

at the ontat interfae as:

kn =
απR2

c

dij
E , cn =

α2πRcξ

dij

√

meqkn (5.15)

Eq.5.14 is assumed to hold in the elasti regime for both the normal tensile fore Fnt

and the normal ompressive fore Fnc
. It results in a model equivalent to the LS+D

(setion 2.5.1) with its own partiular de�nition of the kn sti�ness.

Shear fores

The shear fore F
ij
t along the shear diretion t

ij
s is modelled by the LS+D model (setion

2.5.1) whih applies in both ompression and tension states. Here an expression using

an inremental update is presented:

F ij, n+1
t = F ij, n

t + kt∆sn+1
(5.16)

No loal damping was employed in the tangential diretion. The limiting values of

the tangential fore are de�ned by the failure mode desribed in setion 5.2.3. The

determination of the relative tangential displaement ∆s was detailed already for the

disontinuum ase in setion 2.5.1. The sti�ness value kt is dedued similarly as the

normal fores yielding to a ratio:

κ =
kt
kn

=
1

2(1 + ν)
(5.17)



158 DE model for ohesive material

5.2.2 Global bakground damping fore

Some appliation examples happen to be in a stati or quasi-stati regime. The appli-

ation of a global damping to all the partile systems an numerially help the dynami

expliit alulation ahieving a quasi-stati state of equilibrium. This damping whih is

non-visous is additional to the loal damping introdued at the ontat interfae. The

following global damping fores F
damp
i and torques T

damp
i were onsidered:

F
damp
i = −αt

∥

∥

∥

∥

∥

F
ext
i +

nc
∑

j=1

F
ij

∥

∥

∥

∥

∥

u̇i

‖u̇i‖
(5.18)

T
damp
i = −αr ‖Ti‖

ωi

‖ωi‖
(5.19)

This damping redues the total unbalaned fores resulting in every partile. The

translational and rotational damping oe�ients αt
and αr

are design parameters. A

pratial hoie is to de�ne αt
and αr

as a fration of the sti�ness parameters kn and

kt, respetively. In this work the value taken for the laboratory tests in setion 5.5 is

αt = αr = 0.2. Alternative a visous type damping an be used as desribed in [63, 95℄.

5.2.3 Elasto-damage model for tension and shear fores

In order to reprodue the behaviour of the �tional ohesive materials like ement,

rok or onrete, the DEMpak model introdues a simpli�ed unidimensional non-linear

elastiity, plastiity and damage laws as well as a spei� unoupled

2

failure riteria.

These models were speially designed for its appliation in projets in the �eld of onrete

test simulation (setion 5.5) and rok mehanis. For onveniene the upper indies i, j

are omitted from now onward in the de�nition of the normal and shear fores F
ij
n , F

ij
t

at a ontat interfae.

Normal and shear failure

The DEMpak model assumes that the bonds are ohesive (they an work both in

ompression and tension) until some failure riteria related to the shear or tensile stresses

is met. The unoupled failure (de-bonding) riterion for the normal and tangential

2

The term unoupled means that the tension and shear failure riteria are independent of one

another.
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diretions at the ontat interfae between spheres i and j is written as:

Fnt
≥ Fnt

, Ft ≥ Ft (5.20)

where Fnt
and Ft are the interfae strengths for pure tension and shear-ompression

onditions respetively, de�ned in the model as:

Fnt
= σf

t Ā
ij , Ft = τ f Āij + µs ·max (Fn, 0) (5.21)

where σf
t and τ f are the tension and shear failure stresses, respetively and µs = tanφs

is the (stati) internal frition parameter. These values are assumed to be an intrinsi

property of the material. The failure stress σf
t is typially determined from a BTS

laboratory test. In this work, τ f and φs have been taken respetively as the ohesion

and the internal frition angle of the Mohr-Coulomb riterion.

Figure 5.9: Unoupled failure riterion in terms of normal and shear fores

The values of τ f and φs an be estimated following the proedure proposed by Wang

et al. [134℄ for roks:

K = tan2

(

π

4
+

φs

2

)

, P = 2τ f tan

(

π

4
+

φs

2

)

(5.22)

where K is the slope of the line that �ts the values of the limit axial stress versus the

on�ning pressure for di�erent triaxial tests and P is the value of the limit axial stress

(de�ning the onset of the non linear branh) for the Uniform Compressive Strength

(UCS) test. The value of φs and τ f are obtained from equations 5.22. The ohesive

models of the DEM, in general, require the alibration of these parameters phenomeno-

logially using this or other proedures trying to �t the experimental urves [96, 128℄.
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Figure 5.9 shows the graphi representation of the failure riteria desribed by eq. 5.20

and eq. 5.21 whih assumes the simpli�ation that the tension and shear fores on-

tribute to the failure of the ontat interfae in a deoupled manner. On the other hand,

shear failure under normal ompression fores follows a Mohr-Coulomb type onstitutive

law, with the failure line being a funtion of the ohesion, the ompression fore and the

internal fritional angle.

Damage evolution law

Elasti damage an be aounted by assuming a linear evolution of the damage param-

eters dn and dt whih ontrol the loss of sti�ness in the fore-displaement relationships

in the normal (tensile) and tangential diretions, respetively (Figure 5.10).

(a) Damage law for tension (b) Damage law for shear

Figure 5.10: Undamaged and damaged elasti module under tension and shear fores

The onstitutive relationships for the elasto-damage model are written as:

Normal (tensile) diretion







Fnt = kd
n un = (1− dn) kn un , if 0 < dn ≤ 1

Fnt
= 0 , if dn ≥ 1

(5.23a)

Tangential diretion







Ft = kd
t ut = (1− dt) kt ut , if 0 < dt ≤ 1

Fnt
= 0 , if dt ≥ 1

(5.23b)

For the undamaged state dn = 0 and dt = 0, while for a damaged state 0 < dn ≤ 1 and

0 < dt ≤ 1. kd
n and kd

t are damaged elasti sti�ness parameters.
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The evolution of the damage parameters is hosen evolve linearly between the two limits

ul
and uf

for both tangential and tensional diretions that have to be introdued in the

model. Therefore, the evolution of the damage parameters is expressed:

dn =
un − ul

n

uf
n − ul

n

, dt =
ut − ul

t

uf
t − ul

t

(5.24)

Damage e�ets are assumed to our when the failure strength onditions are satis�ed:

Fnt
≥ Fd

nt
, Ft ≥ Fd

t (5.25)

At the same time the limit strengths Ft and Ft evolve due damage in a non-linear way:

Fd
nt

= kn(1− dn) ·
[

ul
n + d(uf

n − ul
n)
]

Fd
t = kt(1− dt) ·

[

ul
t + d(uf

t − ul
t)
]

(5.26)

where Fd
nt
and Fd

t are the damaged interfae strengths for pure tension and pure shear

onditions, respetively. Other de�nitions using frature mehanis arguments an be

found in [76, 95℄.

5.2.4 Elasto-plasti model for ompressive fores

 

Figure 5.11: Normal ompressive stress-axial strain relationship in a Uniaxial Strain

Compation test for a saturated ement sample. Taken from Oñate et al. [96℄
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The ompressive stress-strain behaviour in the normal diretion for fritional materials

suh as ement and onrete is typially governed by an initial elasti law up to a limit

de�ned by the ompressive axial stress σel, followed by a non-linear elasti-plasti be-

haviour that varies for eah material. An example is given in �gure 5.11.

The ommon strategy in a DEM ode is to phenomenologially identify the parameters

that de�ne a generi and simple non linear and plastiity law on the normal ontats

[128℄. Here, a simple model is introdued where the elasto-plasti relationships in the

normal ompressive diretion are de�ned as:

∆Fnc
= kni

∆un for ∆un ≥ 0 (5.27a)

∆Fnc
= kn0

∆un for ∆un < 0 (5.27b)

where kn0
is the initial (elasti) ompressive sti�ness orresponding to the material

Young's modulus E = E0, and kni
is the tangent ompressive sti�ness given by:

kni
=

kn0

YRCi

(5.28)

YRCi is the ratio between the original and the new apparent Young's modulus YRCi =

E0/Ei. Several onseutive branhes an be introdued in the model based on the

de�nition of the strength limits, denoted LCSi, in whih the ompressive sti�ness hanges

its slope as depited in �gure 5.12.

Figure 5.12: De�nition of the model parameters of the elasto-plasti model
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In the same way, the ompressive stress limit at whih the plastiity starts has to be

also introdued. Normally it will oinide with the �rst hange of slope introdued.

After that point, the unloading follows the initial elasti slope instead of going over the

non-linear loading path.

5.2.5 Post-failure shear-displaement relationship

A bond an break if the shear fores or normal fores in tension reah their respetive

strengths. In ase of employing a damage law, the omplete failure ours when the

maximum damage is ahieved. After that point, the bond is no longer ohesive and the

basi fritional ontat is reovered from the LS+D model (setion 2.5.1).

Figure 5.13 shows the evolution of the failure lines from the undamaged to the fully

damaged state for the unoupled model.

Figure 5.13: Damage surfaes for unoupled normal and shear failure

5.3 Virtual Polyhedron Area Corretion

This setion desribes a methodology to derive the ontat areas in every bond suh

that the partition of spae is ful�lled in a similar way as a Voronoi tessellation would

do but in a very heap and e�ient manner. This provides an alternative to the global

adjustment parameter α (eq. 5.6) that the DEMpak model does in order to orret the

overestimation of the bonding areas (setion 5.2.1) whih was found not to be aurate.
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Contat parameters derivation

As a �rst step, the determination of the representative ontat area Ac in a bond is

reviewed. The method proposes to obtain kn and kt from the respetive equivalent axial

and shear sti�ness that orresponds to a trunated onial volume (�gure 5.14).

Figure 5.14: De�nition of the ontat interfae bonds in the Virtual Polyhedron method

The derivation is as follows:

un = uj
n − ui

n =

∫ L

0

ε dx =

∫ L

0

Fn

EA
dx =

Fn

E

∫ L

0

dx

A(x)
(5.29)

A linear variation of the radius:

R = Ri (1 + λ x) where λ =
Rj − Ri

Ri · (Ri +Rj + δ0)
(5.30)

yields to:

Fx = knun kn = πE
RiRj

Ri +Rj + δ0
(5.31)

Proeeding similarly, for the shear stress, the following is obtained:

kt = πG · RiRj

Ri +Rj + δ0
,

kt
kn

=
1

2(1 + ν)
=

G

E
(5.32)

The ontat area an be regarded as:

Aij = πRiRj (5.33)

and then, the sti�ness parameters rewritten:
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kn =
EAij

Ri +Rj + δ0
, kt =

GAij

Ri +Rj + δ0
(5.34)

The full derivation an be found in [109℄.

Virtual polyhedra

Obviously, the areas resulting from equation 5.33 yield to overlapping of the ontat

domains de�ned by the bonds ij linked to partile i. The solution suggested here is to

introdue a loal orretion (eq. 5.35) rather than the global fator proposed by the

DEMpak model (eq. 5.6).

Āij = αiA
ij

(5.35)

The determination of a onsistent area of interation an be ahieved by de�ning a

portion of the plane entred at the ontat point and normal to the line onneting

two partiles whih is limited by the intersetion with other ontat planes (�gure 5.15).

These intersetions lead to omplex geometries that de�ne irregular polyhedra of n sides

surrounding every partile. This would have the advantage that the partition of unity of

the domain would be ahieved by the assoiated volumes. However, the determination

of these geometries and their respetive area is an expensive alulation.

Figure 5.15: Polyhedron assoiated to a partile. Taken from: De Pouplana [27℄

Trying to preserve the simpliity of the method, an approximation to this proedure is

introdued. The idea is to approximate the irregular polyhedra of n faes to a virtual
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regular one of the same number of faes and determine the total overed surfae as

the surfae of the regular one. The assumption is that the total area of the resulting

polyhedron is similar to the total area of its regular ounterpart. It has been found

numerially that the assumption of similar total surfae between regular and irregular

polyhedra enlosing an sphere is aurate.

Figure 5.16: Platoni Solids, regular polyhedra. Taken from: Wikipedia

Table 5.1: 3D Polyhedra area ratio

Polyhedron Tetrahedron Hexahedron Otahedron Dodeahedron Iosahedron

Num. of neigh 4 6 8 12 20

Surfae area 24R2
√
3 24R2 12R2

√
3 600R2

25+11
√
5

√

5+2
√
5

5
120R2

√
3

7+3
√
5

Ratio of areas 3, 308 1, 910 1, 654 1, 325 1, 207

The radius an be taken as (1 + β)Ri when the initial on�guration is not tangent.

Table 5.2: 2D Polygons area ratio

Polygon Triangle Square Pentagon Hexagon Heptagon Otagon Nonagon

Num. of neigh 3 4 5 6 7 8 9

Ratio of areas 1.654 1.273 1.156 1.103 1.073 1.055 1.043

Polygon Deagon Hendeagon Dodeagon Trideagon Tetradeagon

Num. of neigh 10 11 12 13 14

Ratio of areas 1.034 1.028 1.023 1.020 1.017

Table 5.1 summarizes the values of the ratio between the surfae of the existing regular

polyhedra (Platoni solids, Figure 5.16) and the surfae of the target sphere. Sine the
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number of neighbours an be any, the rest of the values for the virtual polyhedra has to

be interpolated. For aademial purposes, the same is done for the 2D ase with regular

polygons in table 5.2.

First, the areas Aij
with every ontat are normally alulated using equation 5.33.

Then, the surfae of the sphere is alulated with the radius of the partile (a�eted

by β). The area As,nc
of the equivalent virtual polyhedron (or polygon) is obtained by

applying multiplying the sphere area times the orresponding ratio of areas in funtion of

the number of neighbours. Finally the orreted areas of ontat Āij
for every neighbour

are determined applying the weighting value αi alulated as:

αi =
As,nc

∑nc

j=1A
ij

(5.36)

There are several aspets of this methodology to take into aount regarding its imple-

mentation:

• The ontat between two partiles i and j yield to di�erent values of ontat area

Āij
and Āji

at eah side. In order to respet Newton's Third Law, the mean of the

two values an be employed.

• The partiles situated at the boundaries are not ompletely surrounded by other

spheres and need a speial treatment. Details on this are given in [109℄.

• The orreted areas are alulated one at the beginning of the simulation and

de�ne the sti�ness values of the ontats. In large deformation ases the areas

ould be realulated.

• After failure of the bonds, the lassi LS+D model employed needs to be de�ned

with the same sti�ness as in the ohesive model in order to avoid sudden hange

in the ontat fores.

5.4 Numerial analysis of the ohesive model

The objetives of this setion is to numerially analyse the DEM applied to the modelling

of a ontinuum by means of doing simple tests and heking basi aspets of the method

suh as onvergene, mesh dependeny, et. This will be done employing the formulation

derived in setion 5.3.



168 DE model for ohesive material

5.4.1 Area determination assessment

In this setion several examples are performed in order to hek whether the method

proposed in setion 5.3, the Virtual Polyhedron Area Corretion, orretly estimates the

area of the geometries.

(a) Mesh 2D-1 (b) Mesh 2D-2 () Mesh 2D-3 (d) Mesh 2D-4 (e) Mesh 2D-5

Figure 5.17: 2D meshes used in the area determination analysis

A retangular geometry of 5 cm width and 10 cm height is meshed by 5 di�erent meshes

in 2D (�gure 5.17) whih range from a regular assembly of diss to a highly heterogeneous

distribution of the partile radius. Theoretially, in every ontating pair a harater-

isti area Āij
in 3D, or length in 2D, (setion 5.3) is assigned so that, in average, no

overlaps are introdued (�gure 5.18).

Figure 5.18: Contat areas (lengths in 2D) assoiated to eah ontat

In order to hek how well is the area assigned to the ontats, the following strategy

is done: several horizontal strips are determined de�ning groups of partiles in ontat.
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The total ontat area between the partiles of eah group projeted horizontally should

math the transversal length (area in 3D) of the geometry. Several strips are set in

order to average the values obtained. This is also done for two di�erent 3D meshes of a

ylinder of 15 cm diameter and 30 cm height.

(a) Strips de�ned in mesh 2D-1 (b) Strips de�ned in mesh 3D-1 () Strips de�ned in mesh 3D-2

Figure 5.19: Examples of the strips de�ned in the meshes

In the following table 5.3 the properties of eah mesh are presented together with he

numerial results of the total area evaluation on the interfaes.

Table 5.3: Properties of the meshes and results of the alulation of area

Mesh 2D-1 2D-2 2D-3 2D-4 2D-5 3D-1 3D-2

Num. of elements 2260 1262 725 1343 325 10511 13500

Mean radius (mm) 0, 72 1, 02 1, 42 1, 02 2, 0 4, 21 3, 86

Rel. stand. Dev.

1
(%) 45, 65 31, 16 10, 24 9, 23 0, 00 25, 25 25, 83

Coord. number

2 5, 08 5, 14 5, 24 5, 79 3, 76 10, 98 10, 97

Mesh porosity

3
(%) 11, 04 9, 39 6, 77 11, 14 18, 31 25, 44 25, 73

Num. area (cm, cm2
) 5, 17 5, 13 5, 11 4, 93 5, 00 179, 4 178, 3

Relative error (%) 3, 3 2, 6 2, 2 −1, 4 0, 0 1, 5 0, 9

1
Rel. stand. dev.: the ratio of standard deviation over the mean value.

2
Coord. number: average number of neighbours per partile alulated as NC = 2nc/np.

3
Mesh porosity: the omplementary of the volume fration of partiles in the mesh over the

geometri volume.
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The results are quite satisfatory sine the main goal here was to obtain a method to

weight the area assigned to the ontats in a way that the real geometry was respeted.

It an be stated that the Virtual Polyhedron Area Corretion method is able to or-

retly determine the areas of ontat for 2D and 3D ases involving homogeneous and

heterogeneous meshes.

5.4.2 Linear elastiity assessment

As explained in setion 5.1.5, the given expressions for kn and kt are not universal to

irregular meshes even if the area orretion (setion 5.3) is applied. Instead, a alibra-

tion proedure is needed [46, 63, 128℄.

In order to study the apabilities of the presented simple linear model, a parametri

study is performed with a linear ombination of the sti�ness parameters:

kn = α · E · Āij

(Ri +Rj + δ0)
, kt = β · G · Āij

(Ri +Rj + δ0)
(5.37)

with α and β varying in the range:

α ∈ [ 1.00, 1.20, 1.50, 1.75, 2.00 ]

β ∈ [ 0.00, 1.00, 2.00, 2 · (1.00 + ν), 3.00 ]
(5.38)

A simple uniaxial ompression is applied to eah of the 2D meshes presented in �gure

5.17. The linear elastiity relations read:

εy =
1

E
σy , εx = − 1

E
νσy (5.39)

Assuming uniform stress and strain in the omplete model, the measure for a maro-

sopi Young's modulus output and Poisson's ratio an be obtained from the measured

quantities as:

E =
σy

εy
, ν = −εx

εy
(5.40)

The test is performed introduing as input: E = 20MPa and ν = 0.25. The output

marosopi values of E and ν are measured for the di�erent ombination of α and β.
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Young's modulus results

(a) Young's modulus (MPa) for mesh 2D-1 (b) Young's modulus (MPa) for mesh 2D-2

() Young's modulus (MPa) for mesh 2D-3 (d) Young's modulus (MPa) for mesh 2D-4

(e) Young's modulus (MPa) for mesh 2D-5

Figure 5.20: Parametri study of output Young's modulus for di�erent meshes
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Poisson's ratio results

(a) Poisson's ratio for mesh 2D-1 (b) Poisson's ratio for mesh 2D-2

() Poisson's ratio for mesh 2D-3 (d) Poisson's ratio for mesh 2D-4

Figure 5.21: Parametri study of output Poisson's ratio for di�erent meshes

Results of Poisson's ratio of mesh 2D-5 have not been inluded sine that mesh yields a

0.0 value in any ase.
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From the results the following an be onluded:

• It seems that the orret value of the Young's modulus is asymptotially reovered

when the tangential sti�ness beomes larger for every mesh. This is a onsequene

of the orretion of areas whih ensures that the stati fores are well alulated

in the undeformed system formed by linear springs (weighted by the areas).

• There is a linear orrelation between the loal α value and the global sti�ness of

the model as it was expeted in small deformations.

• The values of kn have no in�uene on the output Poisson's ratio.

• Given a mesh and a value of β suh that the orret Poisson's ratio measure is

obtained, there exists a value of α in the range of [1.0,∞] whih reovers the

orret marosopi behaviour in terms of Young's modulus.

• The output Poisson's ratio an result in non feasible values greater than 0.5.

• The meshes with higher heterogeneity of radius yield higher Poisson's ratio. Mesh

2D-2 yielded a ν = 0.94 for β = 0.0.

• The values of Poisson's ratio seem to onverge to some value near zero (whih an

even be slightly negative) when the value of β inreases.

• The values obtained for β = 1.0 yield a good aproximation of the Poisson's ratio

for all the meshes exept for mesh 2D-5 whih obviously yields a null Poisson's

ratio.

Even though the ratio kt/kn has in�uene on the output ν, it is lear that the range

of values is given by the geometrial assembly of the partiles and thus, is totally mesh

dependent. It seems a good strategy to hoose a high value of β, or in the limit,

restrit the tangential displaement in the ontats, in order to reover the exat Young's

modulus value with no need of alibration (α = 1.0). This yields to a null or negligible

Poisson's ratio. Then, the desired Poisson's ratio ould be reovered by enforing the

equations of linear elastiity in the bonds that are formed arround every partile.
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5.4.3 Mesh dependeny

The mesh dependeny has been already shown (setion 5.4.2) also for the simple ase

of linear elastiity where, given the same miro parameters (kn and kt), di�erent maro

parameters (E and ν) were measured. Figure 5.22 shows an example of the previous

parametri study.

(a) Stress-Strain plot for all 2D meshes (b) Poisson's ratio plot for all 2D meshes

Figure 5.22: Output Young's modulus and Poisson's ratio for the 2D meshes using

α = 1.00 and β = 1.00

In this ase the vertial strain was imposed. The measure of ν is done marosopially,

traking the position of the partiles with respet to its initial position. The measure of

stress, is done by evaluating the fores that the top and bottom partiles reeive.

5.4.4 Convergene

In the artile by Sfer et al. [112℄ experimental urves for a UCS test on onrete spe-

imens are reported. Oñate et al. [96℄ have reprodued the results using the DEMpak

model. This is the example hosen to analyse the onvergene of the ohesive model

presented. The parameters of the simulation are detailed in setion 5.5.

The onvergene analysis will be done from three perspetives: Number of elements,

time step, and quasi-statiity.
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Convergene in the number of elements

In the introdution, it has been disussed on whether the DEM is or not a disretization

method. A property of a FE disretization is its onvergene in the number of elements.

A similar analysis is performed here with DEs to draw onlusions on that aspet. The

following meshes are used:

Table 5.4: Meshes used in the onvergene analysis

Mesh 100 250 500 1 k 5 k 13 k 70 k

Num. of elements 107 251 497 1004 4959 13500 71852

Mean Radius (mm) 18.75 14.27 11.50 9.20 5.40 3.86 2.26

Coord. number 7.64 8.32 8.87 9.29 9.63 9.55 10.15

In order to have a fair omparison, di�erent time steps have to be used for eah mesh

sine their stability limits depend on the size of the partiles. The estimation of the

ritial time step is based on the highest frequeny of the system. The dependeny of

the frequeny on the size of the partile an be easily derived for the ase of a bond

between two idential partiles:

ωi =

√

ki
mi

=

√

√

√

√

πE · R2
i

2·Ri+δ0

3/4πR3
i · ρ

(5.41)

simplifying for δ0 → 0:

ωi ∝ 1/
√

R2
i ∝ 1/Ri (5.42)

The ratio of time steps relates to the ratio in the number of partiles in the following

way:

∆t1
∆t2

∝ ω2

ω1

∝ R̂1

R̂2

∝ 3

√

V1

V2

∝ 3

√

N2

N1

(5.43)
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The time step is linearly proportional with the radius of the smaller spheres in the mesh

and therefore inversely proportional to the ubi root of the number of partiles in the

mesh. Taking the 13 k mesh as the referene one, with a ∆t = 1e − 7, the others were

saled aordingly.

Figure 5.23: Convergene analysis for the number of partiles in the disretization

Although the results seem to onverge by inreasing the number of elements, its monotony

and order of onvergene for the variables of interest suh as the yield stress are di�ult

to determine. The visualization of the results and the raks traking is obviously better

de�ned for �ner meshes (see �gure 5.31).

Convergene in time step

The value for the ritial time step for the referene 13 k mesh is of: ∆tcr ≈ 6e−7
. The

following values have been used in the analysis: [1e−8, 5e−8, 1e−7, 5e−7].

The results (�gure 5.24) orroborate that a time step slightly lower than the ritial

one (5e − 7) is not enough for the stability of the system. However, the alulation is

stable for a time step of 1e − 7, whih is approximately the value resulting after the

appliation of the safety value β = 0.17 (setion 2.6.4).
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Figure 5.24: Convergene analysis for the time step seletion

The solution does onverge when the time step is smaller as shown in �gure 5.24.

Convergene in quasi-statiity

The expliit formulation of the DEM is naturally oneived to solve dynami problems.

However the quasi-stati onditions of the tests an also be simulated by imposing

displaements and traking the resulting fores. The quasi-stati brittle frature of a

onrete speimen subjet to a uniaxial ompressive test reported in Sfer et al. [112℄

have been simulated. The mesh used for this analysis is the 13 k mesh previously used.

A few speial onsiderations have to be done:

• The experimental loading veloities are of 0.0006mm/s. At this veloity the

real experiment takes 20 minutes to reah the desired failure deformation around

0.25%. Using the seleted stable time step 1e− 7, a number of 1, 25e10 time steps

would be required at that veloity whih is obviously not feasible and thus, the

veloity of the simulation has to be drastially inremented.

• Extra damping is needed in quasi-stati simulations in order to kill the dynami

e�ets. In this sense, the restitution oe�ient is set lose to zero, e = 0.0015,

killing all the loal ontat unbalaned fores.

• The non-visous global damping (setion 5.2.2) will be employed to redue the
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total unbalaned fores resulting in every partile. A value of α = 0.2 is used in

the analysis.

• The mass of the partiles an be also modi�able sine the aelerations are not an

interesting result in a quasi-stati simulation. In a dynami analysis however, the

porosity of the mesh should be taken into aount and inrease the mass assoiated

to the partiles that ompose the simulated body. In this partiular analysis the

mass value has not been modi�ed.

The referene experimental data in [112℄ orresponds to a loading veloity of 0.0006mm/s.

The simulated loading veloities have been: [0.002, 0.020, 0.100, 0.200, 1.000]m/s. This

partiular ase has been designed with no damage in the onstitutive law in order to

hek if the model an reprodue the brittle behaviour.

Figure 5.25: Convergene analysis for the loading veloity

The results learly show that the loading veloity has in�uene on the results. The

elasti part is well alulated even for the 1.0 m/s ase, where the dynami e�ets

appear in shape of elasti waves produed by an exessively fast loading. The failure

however, gives higher peak values and higher deformation ranges for the high veloity

ases yielding to a dutile behaviour. On the other hand, the slowest ase of 0.002m/s

yields a extremely brittle behaviour mathing the laboratory results.
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5.4.5 Stress evaluation and failure riteria

The phenomenologial approah is widely used in the simulation of ohesive materi-

als using the DEM. The failure parameters of a given model have to be alibrated by

performing di�erent typi�ed tests and tuning the parameters that �t the experimental

urves [128℄. The methods onsidered in most of the ases however, whih are based

on unidimensional failure riteria on the ontats, do not su�e to represent the real

behaviour of the failure mehanisms in the ontinua.

To show this idea, a simple test has been performed involving a ylindrial onrete

speimen disretized by 70 k DEM partiles subjeted to a hydrostati pressure simu-

lating the hydrostati load stage prior to a the deviatori loading in a triaxial test. A

variable denoted failure riterion state (FCS) has been used to indiate how lose to

failure is a bond under the riteria detailed in setion 5.2.3. The value is alulated as:

FCS =















max
(

Fs

F ,
Fnt

Fnt

)

for Unoupled Mohr-Coulomb without damage law.

max
(

Fs

F , un

uf
n

)

for Unoupled Mohr-Coulomb with damage law.

1.0 for Broken bonds

(5.44)

(a) Hydrostati loading in a speiment (b) Failure riterion state plot on bonds

Figure 5.26: 3D ylindrial speimen meshed with 70 k spheres under the hydrostati

loading stage of a triaxial test
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Figure 5.26(b) shows the values of FCS ranged [0.0, 0.3] plotted in linear elements on-

neting the entres of the partiles whih simulate the bonds. It an be seen that, in

some ontat elements, values near the 30% of the failure riterion have been reahed.

The results orrespond to the end of the hydrostati loading of a triaxial test where a

on�nement of 30 MPa has been reahed. The fat that some ontats are already loser

to the failure ontradits the real e�et of the on�nement whih pushes the failure point

further.

The problem is obviously that the ontat only aptures the on�nement in one di-

retion, the normal one. A possible way to improve this is the development of failure

riteria based on the real three-dimensional stress and strain states in the ontinuum.

This an be ahieved by averaged measures of strain and stress tensor in the viinity of

the partiles. The de�nition of these average stress and strain tensors is widely disussed

in literature for granular materials and disrete media [6, 62℄.

5.5 Pratial appliation in a projet

One of the projets arried out within the sope of this thesis is presented here. Weath-

erford Ltd. ompany was interested in numerially reproduing the typial tests arried

out in a material laboratory with onrete-like speimens in order to validate the ohe-

sive DE model.

The DEMpak model was used to model the behaviour of these materials whih an

range from brittle to dutile depending on the on�nement onditions. After some al-

ibration work, the model is able to predit the failure and the strain-stress evolution in

di�erent ases.

A spei� user interfae speially devised for the numerial simulation of laboratory

tests have been developed and used for the projet: the Virtual Lab. It is introdued in

setion 6.1.4.
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5.5.1 Triaxial and Uniaxial Compressive Tests on onrete spe-

imens

The experimental tests were arried out at the laboratories of the Tehnial University

of Catalonia (UPC). Details on testing are given in [112℄. The onrete used in the

experimental study was designed to have a harateristi ompressive strength of 32.8

MPa at 28 days. Standard ylindrial speimens (of 150mm diameter and 300mm

height) were ast in metal molds and demolded after 24 h for storage in a fog room.

 

(a) View of the testing devie

 

(b) Seion of the testing devie

Figure 5.27: Display of the triaxial experiments in the laboratory. Taken from: Sfer et

al. [112℄

The triaxial tests were prepared as shown in Figure 5.27, with a 3-mm-thik butyl sleeve

plaed around the ylinder and an impermeable neoprene sleeve �tted over it. Before

plaing the sleeves, two pairs of strain gages were glued on the surfae of the speimen

at mid-height. Steel loading platens were plaed at the �at ends of the speimen and

the sleeves were tightened over them with metal sraps to avoid the ingress of oil. The

tests were performed using a servo-hydrauli testing mahine with a ompressive load

apaity of 4.5 · 106N and a pressure apaity of 140 MPa. The axial load from the

testing mahine is transmitted to the speimen by a piston that passes through the top

of the ell.
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Several levels of on�ning pressure were used in order to study the brittle-dutile tran-

sition of the response: 1.5, 4.5, 9.0, 30 and 60 MPa. First, the presribed hydrostati

pressure was applied in the ell, and then the axial load was inreased at a onstant

displaement rate of 0.0006mm/s.

5.5.2 Desription of the material model

The model employed is the DEMpak model, desribed in setion 5.2. Table 5.5 shows

the DEM parameters for the UCS and triaxial tests for on�ning pressures of 1.5, 4.5,

9.0, 30.0 and 60.0 MPa.

ρ (kg/m3
) µs µd E0 (GPa) ν σt

f (MPa) τf (MPa) α uf
n/u

l
n uf

t /u
l
t

2500 0.90 0.25 28 0.2 5.0 16.0 1.0 0.2 0.2

LCS1 (MPA) LCS2 (MPa) LCS3 (MPA) YRC1 YRC2 YRC3

20 45 70 3 12 22

Table 5.5: DEM parameters for UCS and triaxial tests on ylindrial onrete samples

for on�ning pressures of 1.5, 4.5, 9.0, 30 and 60 MPa

The value of the shear failure stress τ f and the internal frition angle have been es-

timated as τ f = 16 Mpa and φs = 42◦ (µs = 0.9) using the proedure desribed in

setion 5.2.3. The Coulomb frition oe�ient has been estimated from numerial tests

as µd = 0.90. The tensile strength is dedued from the �exural test as τ f = 4.5 Mpa

whih translates into a value of τ f = 3.2 MPa in the BTS test. This assumption has

been validated numerially.

The parameters denoted LCS are limits in the ompressive normal loal stress where

the elasti-plasti urve hanges its slope and YRC are the values of the redution of

the normal sti�ness as desribed in setion 5.2.4. These together with the fators uf
n/u

l
n

and uf
t /u

l
t, de�ning the damage model, have been determined by adjusting the urves

to the experimental data in a phenomenologial haraterization proedure [96, 128℄.
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5.5.3 Simulation proedure

The simulation of a triaxial test within the DEM reprodues the experiment as follows:

(a) The on�ning pressure is applied up to the desired hydrostati testing pressure.

(b) A presribed axial motion is applied at the top of the speimen until this fails,

or until the axial ompressive strain reahes a desired amount of strain while the

on�ning pressure is held onstant.

The on�ning pressure in the numerial model is diretly applied to the spheres that

lay on the surfae of the speimen. A normal fore is applied to eah surfae partile

in the radial diretion and vertial diretion respetively to the lateral partiles and the

ones on the top and bottom. The magnitude of the fore is omputed as Fni
= γ p π R2

i

where p is the on�ning pressure. The fator γ adjusts the areas in order to ensure that

the total appliation area of the pressure mathes the total surfae of the geometry.

For the Uniaxial Compressive Strength (UCS) and the Brazilian Tensile Strength (BTS),

the proess starts by step (b) with zero on�ning pressure. Further details an be found

in [96℄.

5.5.4 Comparison of numerial and experimental results

Figures 5.28 and 5.29 show the stress-strain urves obtained for the Triaxial tests for

on�ning pressures of 1.5, 4.5, 9.0 and 30 MPa while �gures 5.30 and 5.32 show the

results for the Unixaial Compressive Strength (UCS) and the Brazilian Tensile Strength

(BTS) tests using the DEMpak model.

The generation of the samples and the set up of the onditions was done using the so

alled Virtual Lab module (setion 6.1.4) of the DEMpak software in a mesh of approx-

imately 13 k spheres for all ases exept the BTS whih was performed using a slightly

larger mesh of approximatelly 16 k spheri partiles.

The results have been reported in the artile by Oñate et al. [96℄ showing good agree-

ment with the experimental values reported in [112℄.
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Triaxial tests

Figure 5.28: Triaxial test on onrete samples with 1.5 MPa, 4.5 MPa and 9.0 MPa

on�ning pressure. Experimental results in [112℄ versus DEM results for 13 k. Taken

from: Oñate et al. [96℄
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Figure 5.29: Triaxial test on onrete samples with 30 MPa and 60 MPa on�ning

pressure. Experimental [112℄ versus DEM results for 13 k. Taken from: Oñate et al.

[96℄
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Uniaxial Compressive Strength test

Figure 5.30: Uniaxial Compressive Strength (UCS) test on onrete sample. DEM

results for the 13k mesh in KDEM. Taken from: Oñate et al. [96℄

(a) Horizontal displaement before failure (b) Horizontal displaement after failure

Figure 5.31: Horizontal displaement results of a entred setion of a 3D ylindrial

speimen meshed with 70 k spheres (deformation ×2)
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Brazilian Tensile Strength test

Figure 5.32: Brazilian Tensile Strenght test (BTS) on onrete sample. DEM results for

the 13 k mesh in KDEM. Taken from: Oñate et al. [96℄

(a) Displaement results before failure (b) Displaement results after failure

() FCS results before failure (d) FCS results after failure

Figure 5.33: Horizontal displaement of a entred setion of the speimen at the begin-

ning of the loading and after failure in a BTS test (deformation × 10)
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5.6 Cohesive DEM �owhart

Figure 5.34: Basi �owhart for the ohesive DEM



Chapter 6
Implementation and examples

6.1 DEMpak

DEMpak (www.imne.om/dem) is a DEM-based software developed within the frame-

work of the open soure ode Kratos Multiphysis (www.imne.om/kratos). It onsists

of an open-soure ode under BSD liense written in a hybrid Python/C++ language

together with paked GUI's developed for spei� problems.

The DEMpak projet started at 2012 with the begging of this thesis and the number

of the DEM ode developers has been inreasing ever sine forming now a group of 5

ore people plus ontributions from other ollaborators. As part of the thesis objetives,

all developments presented in this doument have been implemented in the DEMpak

ode and are available to any user or developer.

6.1.1 Code struture

The DEMpak ode is integrated in the KratosMultiphysis framework (or Kratos) [25℄

whih is a platform for the development of multi-disiplinary FE-based odes. Kratos

provides a ommon data struture to all the di�erent appliations. In this sense, it

failitates the ombination of appliations. In this work the oupled DE-FE proedure

bene�ted from several developments already implemented in the solid mehanis appli-

ation of Kratos. Apart from that, the Kratos ore provides built-in utilities ommon

in FE-odes and high performane tools to be used in any appliation.
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The main sript of the DEMpak ode is written in python language. It reads the input

�les, sets the simulation properties, launhes the alulation and writes the output �les.

It has an interfae onneting to the ore funtions of the ode (whih is written in C++)

giving a high �exibility and permitting the performane of a lot of analysis and ontrol

operations. The �les that onstitute the ore of the DEM appliation are strutured in

di�erent modules in the following way:

• Strategies: are the main sripts whih de�ne the work�ow of the alulation.

Every problem has its own spei� strategy: disontinuum DEM, oupled DE/FE,

ohesive DEM, oupling with �uid, et.

• Elements: de�ne the partile properties and the ontat harateristis, speify

the neessary variables to onsider and determine how the fores and torques need

to be alulated. Some of the existing elements in the ode are the basi disrete

spherial element, the ohesive spherial element, the DE/FE element and other

speial elements for the �uid oupling, thermal oupling et.

• Utilities: are the di�erent tools neessary in the DEM algorithm suh as ontat

detetion, energy alulations, reation and destrution of partiles in inlet and

outlet regions, geometrial operations, visualization and post-proess utilities, et.

• Integration shemes: Several expliit shemes are available to integrate the

movement of the partiles and lusters.

• Contat onstitutive laws: the interation of partiles is trough spei� ontat

laws whih de�ned here suh as the LS+D, HM+D, et.

• Conditions: are entities used to apply ontat or other kind of boundary ondi-

tions. In ase of ontat with FE, the ontat onditions are the surfae elements

forming part of the FE mesh.

6.1.2 Levels of usability

The DEMpak ode, as an open-soure ode an be aessed at di�erent levels depending

of the type of user as desribed in the following �gure 6.1:
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Figure 6.1: Usability levels of the DEMpak ode

All the apabilities and developments are integrated in a user-friendly GUI whih an

be used by engineers to perform a DE or DE-FE ombined analysis. An overview of

the interfae is found in next setion 6.1.3. For speial operations and higher ontrol

of the algorithm, the advaned user an interat with the python interfae whih has

aess to most of the funtions of the ode and requires a very basi oding knowledge.

In a higher level of omplexity, developers an aess to the ore of the appliation

and modify or extend it as they please. More and more developers join the Kratos

ommunity bringing new developments and apabilities to the ode. The doumentation

online (http://kratos-wiki.imne.up.edu) and the help from the Kratos ommunity in

the forums provide support to the development of the new users' appliations.

6.1.3 Combined DEM-FEM user interfae

As an output of the developments of the thesis a user interfae integrated in the GiD pre

and post-proessor has been generated in ollaboration with the rest of the developers

forming part of the DEM Team. The so alled Solid-DEM interfae is an extension of

the basi DEM interfae of the DEMpak software whih permits the assignment of all

onditions and properties neessary for a basi oupled DE-FE analysis.
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Figure 6.2: Overview of the oupled DE-FE user interfae of DEMpak

The example in �gure 6.2 shows the basi menu of the interfae whih is divided in

the SOLID and DEM part. Regarding the solid part, the material properties and

onstitutive law an be de�ned as well as the type of elements needed for the alulation.

The ontat onditions are assigned to the surfae where ontat is expeted to happen

and lassi boundary onditions an also be applied. To the DEM part, the properties

of the material, the ontat law to be used and other boundary onditions are applied to

the partile meshes. The general options allow the inlusion of bounding boxes limiting

the domain of the alulation, the introdution of gravity and use of other advaned

features. Simulation parameters suh as the time step, the integration sheme, the

neighbour searhing frequeny et. an also be de�ned here. Finally, the seletion of

results for the visualization are available for both DEs and FEs.

6.1.4 The Virtual Lab

The Virtual Lab is a wizard based on the GiD pre and post-proessor whih interats

with the DEMpak ode through the basi DEM user interfae of DEMpak. It was
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developed by the DEM team of CIMNE in ollaboration with the Quanteh ompany.

This tool was developed in the ontext of a projet with Weatherford Ltd. ompany

whih was interested in performing simulations with several ohesive materials using

the DEMpak model. Detailed information of this aspet an be found on the author's

master thesis [109℄.

The wizard automatially sets all the options and parameters needed for the simulation

of material tests, it loads prede�ned meshes and automatially assigns the material

properties and onditions to the mesh elements. It guides the user, step-by-step, through

the preparation of the laboratory tests presented in setion 5.5.1. The available tests in

the wizard are the following:

• Uniaxial Compressive Strength Test

• Triaxial Compressive Test

• Hydrostati Loading Test

• Oedometri Test

• Brazilian Tensile Strength Test

Figure 6.3: Seletion of the type of experiment in the wizard
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The de�nition of a new ase starts with the seletion of the test as shown in �gure 6.3

to later seleted a prede�ned mesh and geometry of the speimen (�gure 6.4).

(a) Geometry and mesh seletion available for the

hydrostati, triaxial, UCS and Oedometri tests

(b) Geometry and mesh seletion available for the

Brazilian Tensile Strength test

Figure 6.4: Prede�ned mesh and geometry seletion in funtion of the test in the wizard

Next, the material properties and the parameters of the DEMpak model (setion 5.2)

are de�ned (�gure 6.5).

Figure 6.5: De�nition of the material parameters in the wizard
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The alulation settings suh as duration of the simulation, loading veloity of the

plates, applied pressure (for triaxial and hydrostati ases) and the alulation time

step are seleted in a next step as depited in �gure 6.6. Finally, the user an selet

whih variables are of interest for the post-proess of simulation as shown in �gure 6.7.

Figure 6.6: De�nition of the general settings in the wizard

Figure 6.7: Seletion of the output results in the wizard

The last step is to run the simulation seleting the parallelization type (�gure 6.8).
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Figure 6.8: Preparation of data and run

The post-proess is automatially generated as well as the stress-strain graphs suh as

the ones presented in setion 5.5.4.

6.2 Performane

It is of apital importane for a DEM ode to be e�ient in terms of omputational ost

sine it onstitutes a expensive method that usually requires the use of large number of

elements to obtain meaningful results. All the developments have been performed with

onerns on e�ieny and memory storage as well as possibility of parallelization of the

di�erent proedures.

6.2.1 Parallelization

A Disrete Element Method ode without parallelization has a very limited use in pra-

tie. The expliit DEM performs independently for eah partile: the neighbouring

searh, the fore alulation and the integration of motion. The parallelization of these

steps an be done in a relatively easy way.

There exist two types of remarkable arhitetures for multiproessor omputing (�g-

ure 6.9), the Shared Memory Mahines (SMM) and the Distributed Memory Mahines

(DMM). In omputer siene, Distributed Memory refers to a multiple-proessor om-

puter system in whih eah proessor has its own private memory. Computational tasks

an only operate on loal data, and if remote data is required, the omputational task

must ommuniate with one or more remote proessors. In ontrast, a Shared Memory

multi-proessor o�ers a single memory spae shared by all proessors.
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Figure 6.9: Cluster of Distributed Memory Mahines. Taken from: Google Images

OpenMP parallelization

The suitable tehnique for SMM is Open MP (Open Multiproessing); it permits par-

allelizing the loops of the proess by using ompilation diretives so that the loops are

split into di�erent sets that are alulated in the di�erent CPU of the same omputer.

OpenMP runs on a shared memory system so most of the personal omputers would

permit parallelizing the alulation and saving time. The ode runs in serial until a

parallelizable loop is found, runs then the loop in parallel and afterwards, reverts bak

to serial. In this sense OpenMP works �ne if every unit step of the loop (normally a

loop over the partiles) is independent from the others and the parts in serial represent

a very small part of the omputation. In setion 6.2.2 a salability test using OMP is

performed.

MPI parallelization

For DMM arhiteture the suitable tehnology is the MPI (Message Passing Interfae);

this would permit running a ase, usually with large number of partiles in a omputer

luster where hundreds, thousands or more CPUs intervene in the alulation. Within

MPI the entire ode is launhed on eah node whih would store the data in its own

memory. The transfer of information and the synhronization of the alulation an be

ontrolled. It is also possible to ombine MPI with OpenMP to get the best of every

tehnology and adapt to the spei� arhiteture of eah luster.
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In the developments of the DEMpak ode a �rst version of MPI parallelization for the

basi disontinuous and for the ohesive DEM was aquired and the results were promis-

ing. There is however, a lot of work urrently ongoing on this topi, also in the topi

of parallelizing via MPI a ombined DE-FE problem whih gets muh more involved in

terms of ommuniation as the ase of only DEs.

The MPI implementation inludes not only the ommuniation between the omputing

nodes but also the rebalaning of partiles assoiated at eah node in order to avoid

that a proessor has a workload muh larger than others in whih ase the performane

dereases drastially.

(a) Initial disposition of partiles with the initial

partition

(b) The partitions evolve as the simulation evolve

to keep an optimal balaning

Figure 6.10: Partiles in di�erent proessors in a hourglass simulation

Figure 6.10 shows an example where the rebalaning is done dynamially as the sim-

ulation evolves. The olour in eah partile indiates in whih proessor it is being

handled; it an be seen that the partiles move from one proessor to another one while

the simulation evolves in order to minimize the ommuniation between proessors and

keep the workloads balaned.
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6.2.2 Helial mixer example

In order to evaluate the overall method behaviour, the simulation of a partile mixer has

been arried out. The model represents a rotatory mixer where ontat ours between

DEs and the three di�erent FE entities (faets, edges and verties) of the boundary

mesh omposed by triangular and quadrilateral elements. Additionally, the simulation

has been used to evaluate the parallelization behaviour.

Desription of the simulation

Figure 6.11: Geometry of the helial mixer. Distanes in meters

Table 6.1: Simulation parameters

Material properties Calulation parameters

Radius (m) 0.0035 Rotation vel. (rad/s) [0.0, 0.0, 0.0]

Density (kg/m3
) 1000 Gravity (m/s2) [0.0,−9.81, 0.0]

Frition oe�. DE/DE 0.50 Time step (s) 5 · 10−5

Frition oe�. DE/FE 0.75 Neighbour searh freq. 1

Young's modulus (Pa) 107 Simulation time (s) 20.0

Poisson's ratio 0.2

Rolling frition oe�. 0.001

Restitution oe�. 0.4
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Fig. 6.11 shows the geometry of the mixer, �gs. 6.12() and 6.12(d) show the initial

and �nal arrangement (after 20 seonds) of the partiles respetively and �nally, �g.

6.12(a) shows the triangles used in the mesh and and 6.12(b) the quadrilaterals. The

simulation is performed with a mesh omposed by 29559 DEs, 848 triangular FEs and

1600 quadrilateral FEs. The material properties and simulation parameters used are

desribed in table 6.1. Additionally, in this test, some rolling resistane moment has

been added to model the partile irregularities. The ontat between the DE and the

rigid FE is evaluated by the H2
method. The ontat law used was the HM+D.

(a) Triangular FEs (b) Quadrilateral FEs

() DEs initial arrangement (d) Spheres arrangement after 20 s.

Figure 6.12: Mesh used in the horizontal rotatory mixer and simulation results

Code performane in serial

The DEMPak ode was tested in a mahine with an Intel Xeon E5-2670. It took 29

hours, 20 minutes and 30 seonds in serial to run 20 seonds of simulation whih om-

prehend 400000 time steps. Some results on the performane of the ode are presented

in Table 6.2. In this spei� ase, whih involves approximately 30 k DE and 2.5 k FE,

it an be seen that the alulation e�ort for DE/FE ontat searh represents about the

20% of the total CPU time. The results showed that by splitting the Fast Intersetion

and the H2
Method the ode turned to be 5% faster whih is a signi�ant improvement

for this ase, where most of the ontats are DE/DE rather than DE/FE. It an be also

seen that the ost of the H2
Method is very low (only 1%) when the split is applied.
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Table 6.2: Serial performane of the ode for the industrial example

Split Fast + H2
Diret H2

Method

DE/DE Contat Searh 53.9% 51.4%

DE/FE Contat Searh 20.7% 23.9%

- Create Bins and others 4.5% 4.2%

- Fast Intersetion 15.1% -

- H2
Method 1.2% 19.7%

Total time 105630 s 111041 s

Code performane in parallel

Graphs in �g. 6.13 show the ode performane using an OpenMP parallel omputing

strategy. Based on the results it an be onluded that, despite being the speedup far

from the ideal linear ase, the fat that the ontat hek algorithm is totally parallel

helps to the performane.

1 2 4 8

Number of processors

0.0

0.2

0.4

0.6

0.8

1.0

t/
t 1

(a) Simulation time redution

1 2 4 8

Number of processors

1

2

3

4

5

6

7

8

S
p

e
e
d

u
p

(b) Saling fator ompared to the ideal urve

Figure 6.13: Salability test results on the helial mixer
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6.3 Appliation examples

The possible appliations of the developments presented in this dissertation are shown

through several aademial examples.

Srew onveyor

An example of industrial appliation of the DE involving large amount of partiles is

presented here (�gure 6.14). The rigid struture presents non-smooth regions (verties

and edges) ontating with the partiles.

Figure 6.14: View of the srew onveyor handling the partiles

The model has an inlet whih inserts partiles and a bounding box delimiting the

domain after whih the partiles are eliminated, the partile while

Membrane elements

The implementation of the oupled between the DE and the FE solver is �exible in the

sense that the oupling is e�etive through the ommuniation of ontat fores between

the two domains, from the partiles to the FE nodes. This an be applied to any solid

or strutural element present in the omputational solid mehanis ode used, whih in

this ase is in the Kratos platform. An example of ombination of a partile DEM with

strutural elements suh as membranes is shown in �gure 6.15.
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Figure 6.15: Sphere impats a membrane

Cluster partiles with membrane elements

Previously in setion 5.5, the triaxial laboratory tests on onrete speimens were simu-

lated applying the pressure as an external normal fore on the surfae partiles. A more

realisti approah is needed in ases where the samples are formed by a non ohesive

granular material suh as the ballast partiles presented in �gure 6.16. In this ase, the

use of a membrane, simulating the real experiment onditions, is neessary to keep the

sample ompat and to properly apply the pressure on the partiles whih reloate along

the simulation. This example has been run by Irazábal [53℄ with DEMpak reproduing

the experimental results in [103℄.

(a) View of the membrane (b) View of the lusters

Figure 6.16: Triaxial test on a ballast sample modelled with sphere lusters and mem-

brane elements
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Cluster partiles with solid elements

A struture simulating the tread of a tire is presented in �gure 6.17 whih interats

with a stone modelled by a luster of spheres. This type of analysis ould be onduted

to analyse the e�et of stones athing of di�erent tire designs as well as the damage

indued to them.

Figure 6.17: Stone athing in a tire tread

Impat with plastiity

One of the possible appliation �elds is the simulation of shot peening whih is a old

working proess that aims to improve fatigue strength of metalli parts by bombarding

its surfae with small (generally) spherial shots. Details in terms of residual stresses

and plasti strains are of interest and an be studied using a oupled DE/FE proedure

[43, 90℄. Just serving as a demonstration of apabilities, �gure 6.18 shows a metal sheet

whih is being shot by partiles at di�erent diretion and veloity produing plasti

deformation and loal residual stresses in the metal.

Figure 6.18: Visualization of the plasti strain in a metal under a shot peening proess
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Conlusions and outlook

Within this work, a multi-purpose parallel 3D Disrete Element Method ode has been

developed and implemented in the so alled DEMpak software to be used by the CIMNE

researhers in industrial appliations. The theoretial developments of the thesis have

overed the topis of granular material simulation, ohesive material models and the in-

teration of partiles with rigid and deformable strutures. The onlusions from every

aspet takled in the dissertation are summarized in the following lines.

Two main ontat laws have been analysed to be used for the DE-DE and DE-FE

interation, the linear spring dashpot model (LS+D) of Cundall and Strak [24℄ and

the Hertzian model (HM+D) from Thornton [125℄, adapted from the original by Tsuji

[130℄. These models have been seleted after a thorough bibliographi revision due to its

popularity and the balane between simpliity and auray that they present in both

elasti and inelasti ollisions. It has been appointed that the HM+D is the one that

has to be used when the ontat dynamis are to be well aptured while any of the two

models an be used as a mere penalty method in other situations where the ontat

details are not of apital importane and faster omputations are required.

The use of expliit integration methods prior to impliit ones has been justi�ed for

the dynami harater of the method in the granular material problems that have been

addressed. Several expliit one-step shemes have been tested in di�erent situations

in terms of auray, e�ieny and stability being the Veloity Verlet sheme seleted

as the most advantageous one. It remains to be seen under whih onditions an an
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impliit integration algorithm be advantageous in ases of quasi-statiity alulations as

the ones presented in hapter 5.

The integration of rotations showed to require higher order integration shemes to

ahieve similar a level of auray. To do so, a RK-4 sheme proposed by Munjiza [88℄

has been adapted to quaternions in order to improve its e�ieny. By doing so, the

omputational ost of the sheme is drastially redued and the storage of the rotations

is performed with less than half of the memory ompared to the original algorithm whih

operates with rotation matries.

It has been remarked, still in hapter 2, that the stability of the DE simulation an

not be ahieved simply by ensuring the expliit sheme stability. The use of the ontat

resolution onept has been suggested.

In hapter 3 a new ontat detetion algorithm, the Double Hierarhy Method, reently

published by Santasusana and Irazábal [110℄ has been presented. The method has been

designed to be aurate, robust and e�ient, plaing speial attention to non-smooth

ontat situations, multi-ontat and ases where the DEs and FEs sizes di�er onsid-

erably or ases where the relative indentation between them an be signi�antly high.

This method an be used with di�erent types of ontat FEs providing a high level of

auray in terms of ontat fore ontinuity in inter-element FE transitions and allow-

ing multi-ontat senarios with high mesh independene and low e�ort. It has been

designed to make it easy to implement and adapt to an existing DEM ode. In addition,

the algorithm has been oneived to be fully parallelizable, something essential in order

to allow the alulation of real ases with a great amount of disrete and �nite elements.

The DE-FE ontat detetion is split into two stages: Global Neighbour Searh and

Loal Contat Resolution. Furthermore, the Loal Contat Resolution level is split into

two phases. The �rst one, the Fast Intersetion Test, aiming to determine whih FE

are in ontat with eah DE, disards in a e�ient manner all the FEs not ontating

the DE. One the FE with ontat are known, the seond phase, the Double Hierarhy,

takes plae in order to aurately alulate the ontat harateristis and to remove

invalid ontats.
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The auray and robustness of the proposed algorithm has been veri�ed by di�erent

benhmark tests. An industrial example is also presented to show its omputational

e�ieny and test its parallel behaviour. Having in mind that in a shared memory

parallelization the performane is limited by the amount of serial parts of the ode, the

possibility to parallelize an important part of the ode, suh as the ontat detetion,

allows the omputation speed to sale up. The results proved that the split of the Loal

Resolution into a Fast Intersetion and the Double Hierarhy Method greatly improves

the overall performane.

The desription of the method has been omplemented with its limitations whih are

basially in the normal ontat fore in ases involving onave transitions and in the

tangential fore when a partile slides aross di�erent FEs. The errors are quanti�ed

and a solution is given to the ase of the tangential fore. Notwithstanding those limi-

tations, it an be onluded that the H2
method presents superiority in several aspets

ompared to the other DE-FE ontat detetion algorithms available in the bibliography.

The oupling between the DE method and a solid mehanis problem has been de-

sribed in hapter 4. The presented algorithm onsists in alulating separately the two

domains whih ommuniate through the ontat fores. The detetion of ontats is

arried out by the H2
method and the evaluation of the fores is done on the "FE side"

by adapting the HM+D law to the ase of DE-FE ontat. The key point of disussion

in the hapter is the way the fores are ommuniated from the DEs to the nodes of

the FEs. A new method is developed whih distributes the fores into all the elements

involved in the ontat weighted by the intersetion areas of the partile and the respe-

tive FEs. The solution presented for the intersetion area alulation is based on the

assumption of a disretization of planar triangles with a uniform pressure distribution.

After desribing the proedure several examples proved its superiority against the popu-

lar diret interpolation of fores. The examples showed how the problems regarding the

ontinuity of fores are solved with the employment of the proposed Area Distributed

Method (ADM). Further assessment is needed to analyse the error introdued by the

method due to the uniform approximation of the pressure and also the lak of auray

introdued by the use of linear triangles to approximate quadrati elements. Also the

performane of the method should be analysed to give a stronger support to the hoie

of the proposed simpli�ations.
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The oupling has been devised with the problem of partile-struture interation in

mind in whih the high frequeny response given by the impats is a matter of interest.

This and the fat that multiple ontats our along the simulation reinfore the use of

a expliit integration sheme whih adapted perfetly with the DEM expliit sheme. A

global balane of energy of the oupled proedure is performed proving that the ADM

predits orretly the ontat without the inlusion or loss of energy. The idea of using

the balane of energy to hek the global stability of the method has been then intro-

dued but further developments have to be done in order to design a methodology that

an be useful to that end by taking into aount all energy terms in a simulation.

The modelling of ohesive materials suh as rok, ement or onrete within the DEM

has been put on the frame in hapter 5. Basi numerial analysis learly highlighted the

problems that the DEM presents trying to reprodue the marosopial measures suh as

the Young's modulus and Poisson's ratio out of the miro parameters of the model even

in the linear elasti regime. It has been learly shown how the problem is ompletely

mesh dependent. Apart from that, the onvergene in the number of elements does not

de�ne a lear monotonous tendeny. A onsistent partition of the disretized domain

using spheres or other simple partile shapes requires also some extra operations. An

improvement to the determination of the ontat areas has been proposed using virtual

polyhedra whih seems to onsistently de�ne the interfaes in the model in a simple and

e�ient manner for 2D and 3D ases involving homogeneous and heterogeneous meshes.

Even more omplex is the modelling of the non-linear behaviour of materials and fra-

turing. The existing literature is still far from presenting a methodology that properly

predits the behaviour of material failure with meaningful results in the sense that the

traking of fratures is aurate to a level whih an be useful and ompetitive in om-

parison to ontinuum-based methods. Some alternative exists attempting to solve the

problems presented by the basi DEM whih inrease the omplexity of the method

up to a level whih an make us reonsider if the employment of disontinuum-based

method for a ontinuum mehanis problem is still advantageous against a two-sale

model or a ontinuum-based method.

The DEMpak model has been employed in an industrial projet in the predition of
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the behaviour of onrete through several laboratory tests. The method, whih is based

on a phenomenologial approah, is able to predit the failure and the strain-stress evo-

lution after a alibration proedure. The neessary next step would be the simulation of

the failure in real appliations with strutures in order to see whether the �tted model

is apable to be extrapolated to real senarios.

A great outome of the present PhD thesis is the ontribution to the DEMpak soft-

ware. It onstitutes a versatile and omplete ode whih has many apabilities and

inludes a set of user-friendly GUIs integrated in the GiD pre and post-proessor ready

to be applied to industrial problems in a wide range of �elds. Some of the possible appli-

ations have been demonstrated with simple aademial examples inluded in hapter 6.

The ode has been developed with onerns on e�ieny and has been fully parallelized

using OMP. The parallelization in MPI for big lusters has been implemented only for

the DE domain. Further developments in the ode have to onentrate in this diretion

in order to earn a fully parallelized oupled DE-FE software that an be saled up for

large simulations.
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Appendix A
Hertz ontat theory for spheres

Basi derivation

The ase of the normal ontat of two elasti bodies with spherial surfae of radii R1

and R2 was solved by Hertz in 1882 [47℄. The origin of oordinates is set at the initial

ontat point O being the x − y plane the ommon tangent plane of the two surfaes.

The pro�le z for any of the surfaes in a region at a small distane r from the origin of

oordinates an be desribed by:

z1 =
r2

2R1
, z2 =

r2

2R2
, r << R1, R2 (A.1)

When a fore F is applied to press the bodies together a irular ontat region is pro-

dued where the pressure ats to deform the original spherial surfaes. The framework

of this theory assumes that this region, haraterized by the radius a, is small ompared

to the radii of urvature (a << R1, R2). The distane between these two surfaes an

be desribed as:

δ − uz1 − uz2 =
r2

2Req
, where Req =

(

1

R1
+

1

R2

)−1

(A.2)

where δ is the apparent indentation of the surfaes at the initial ontat point O and uz

the displaement due to loal deformation in diretion z in points lose to O. Hertz pro-

posed a distribution of pressure under the area of ontat that give rise to displaements

whih satisfy the equation A.2:
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p(r) = p0
√

1− (r/a)2 (A.3)

The solution for the displaements using the proposed pressure distribution is:

uzi =
1− ν2

i

Ei

πp0
4a

(2a2 − r2), r ≤ a (A.4)

where p0 is the maximum pressure loated in the initial ontat point O. And the

equivalent Young modulus E∗
is:

E∗ =

(

1− ν2
1

E1

+
1− ν2

2

E2

)−1

(A.5)

The solution of the displaements substituted into equation A.2 yield:

πp0
4aE∗ (2a

2 − r2) = δ − (1/2Req)r
2

(A.6)

from whih the radius of the ontat irle an be derived:

a =
πp0Req

2E∗ (A.7)

And the apparent indentation of the two spheres:

δ =
πap0
2E∗ (A.8)

The total ontat fore relates to the pressure by:

F =

∫ a

0

2πr p(r) dx =
2

3
p0πa

2
(A.9)

Therefore, the maximum pressure p0 is 1.5 times the mean pressure in the ontat

region. Other useful relationships are:

a2 = Req δ (A.10)

p0 =
2

π
E∗
√

δ/Req (A.11)
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F =
4

3
E∗√Req δ

3/2
(A.12)

The derivation of expressions for more general ases an be found in the book by Johnson

[55℄ and also in the book by Timoshenko [126℄.

Collision time in hertzian ontat

Given a normal ollision of two spheres i and j with no gravity, the time for whih

the spheres remain in ontat an be derived from the energy balane. Before the

ollision the initial energy an be expressed in terms of the initial relative veloity v0

and equivalent mass meq:

E0
k =

1

2
meqv

2
0 , where meq =

(

1

m1
+

1

m2

)−1

(A.13)

During the ontat event the kinemati energy an be expressed as:

Et
k =

1

2
meq δ̇

2, where t ∈ (tc0, tcf) (A.14)

and the elasti energy produed by the elasti deformation of the spheres olliding an

be obtained from the external work performed by the total ontat fore P (equation

A.12) along the relative indentation δ:

Et
e =

∫ δ(t)

0

F (δ) dδ =
8

15
E∗√Reqδ

5/2
(A.15)

Equating the energies:

1

2
meqv

2
0 =

1

2
meq δ̇

2 +
8

15
E∗√Reqδ

5/2
(A.16)

The maximum indentation δ is obtained when the relative veloity is zero (δ̇ = 0):

δmax =

(

1

γ

)2/5

v
4/5
0 , where γ =

16

15

E∗√Req

meq
(A.17)

An expression for the relative veloity during ontat an be found from the previous

equation A.16:
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dδ

dt
=
√

v20 − γ δ5/2 (A.18)

Sine the problem is symmetri, the time of the ollision an be alulated as twie the

time in whih the indentation δ varies from 0 to δmax:

tc = 2

∫ δmax

0

1
√

v20 − γ δ5/2
dδ =

2δmax

v0

∫ 1

0

1√
1− x5/2

dx (A.19a)

tc ≈ 2.94328
δmax

v0
= 2.94328

(

1

v0 γ2

)1/5

(A.19b)

Further information on this topi an be found in [55℄ and [126℄.



Appendix B
Implementation of the Area

Distributed Method

The di�erent aspets of the algorithm whih have to be inluded/modi�ed in the basi

DEM algorithm in order to implement the Area Distributed Method are detailed below.

Extended neighbour searh

Figure B.1: Conept of extended radius. FE with ontat and masters are highlighted
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A ell-based global searh algorithm (setion 3.2.1) is applied to the DE/FE searh us-

ing enlarged bounding boxes on the DEs. Figure B.1 shows an example of a partile

and its extended radius Rext > R. In this situation all the FEs present in the �gure

would be determined as FE potential neighbours. In yellow, the FE with ontat that

are determined by the Fast Intersetion Test (setion 3.3) are shown. Additionally, the

two entities with valid ontat are labelled as masters and their ontat points depited.

Extending the searh we make sure that, during several time steps, the valid entities

to onsider will be inluded in the FE potential neighbours list and therefore, there is

no need to perform the omplete searh every time step. Instead, the loal resolution

applies at every time step only for the stored FE potential neighbours. This way the

ontinuity of tangential fores in non-smooth transitions an be ensured by employing

the strategy desribed in setion 3.5.2.

Determination of Masters and Slaves

First, the Fast Intersetion is applied as usual to the FE potential neighbours to obtain

the FE with ontat. This has to be done every time step. Figure B.2 shows an example

where the FE with ontat have been highlighted with blue and pink olour.

Figure B.2: Contat with multiple elements from two hierarhy groups.
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Now the slaves and masters have to be determined. This is done by the H2
elimination

proedure: whenever the Distane Hierarhy (setion 3.4.2) determines that a given el-

ement ea has hierarhy over an element eb, the seond beomes a slave to the �rst. This

has to be done for all pairs of neighbours determining, as usual, whih are the entities

with valid ontat (hereafter alled masters) and whih are the slaves to every master.

Eah of the olours in Figure B.2 indiate a groups of masters and the orresponding

slaves in the example. A table similar to the following one is obtained:

Masters em Slaves es,m

e1 [e1, e2, e3℄

e6 [e4, e5, e6, e7℄

Table B.1: Correlation of masters and slaves determined by the H2 elimination proe-

dure

The areas of every element Ap
e and their entroids x̄

p
e are determined using simple

geometry operations (desribed in Appendix C). The total area for every master is

determined by the sum of the areas of every slave belonging to that master. Am =
∑

s A
p
es,m. The total area of ontat of the partile is the sum of all the ontat areas,

or equivalently, the sum of all the masters area: AT =
∑

eA
p
e =

∑

mAm.

Fore evaluation

First of all, the tangential fore is reovered from the old one as desribed in equation

2.37. The way to determine whih is the orrespondent ontat fore in ase of multi-

ontat ensuring ontinuity has been desribed in setion 3.5.2. Next, the Hertz Mindlin

ontat model 2.5.2 is applied as usual, updating the normal and tangential fores in

the ontat together with the dissipation terms. Finally, the normal fores are saled in

every master by the total ontat area:

Fm, saled
n = Fm

n · Am

AT

(B.1)

If the normal fores are not saled, there is a sudden inrease of the ontat fores

when new points of ontat are generated due to the FE deformation (see setion 4.3.2).
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Instead, if the total area in ontat is the variable ontrolling the magnitude of the fore,

the transitions beome smooth.

DE to FE fore ommuniation

One the fores in DE are fully determined, they are ommuniated to the nodes of the

solid in ontat. Eah master ontat fore is transmitted to its FE slaves.

Figure B.3: Contat fore ommuniated from one DE to two FEs.

In �gure B.3 a partile is depited whih has ontat with two �nite elements. Sine

the two elements are oplanar and the ontat point Pc lies on

e©1
, the H2

method

determines that

e©1
is the only master ; elements

e©2
and

e©1
itself are the slaves of

this system. Therefore, the fores that are transmitted to eah of the elements are

determined as follows: F e1 = A1/(A1+A2) ·F and F e2 = A2/(A1+A2) ·F . The normal

fores in Fn do not need to be saled sine the area of the master Am = A1+A2 oinides

with the total area of ontat AT of the partile (no other ontats are present). Now,

the ontribution of every element to the nodal fores are alulated by interpolation of

the elemental fores evaluated at the entroids x̄
p
e of every intersetion area:

F e
i = Ni(x̄

p
e)F

ei
(B.2)

Finally, those fores are nodally assembled yielding the total nodal fores Fi =
∑

e F
e
i .

This is the ase of nodes 2 and 4 in the example, whih reeive the ontribution from

the two elements.
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Cirle-triangle intersetions

In general, the intersetion of a sphere and a linear triangle in a 3D spae yields to a 2D

geometry omposed by irular and straight lines. Figure C.1 shows one of the possible

situations.

Figure C.1: Possible intersetion between sphere and triangle

The basi geometrial expressions developed in setion 3.3 will be useful here. Cπ is

the entre of the sphere projeted onto the plane (review �gure 3.4) and a is the radius

of the intersetion irle whih is related to the indentation δ as follows: a = R δ being

R the radius of sphere. v
i
are the oordinates of the nodes and ei

are the vetors joining

the verties that de�ne the edges.

The grey area, denoted Ap
e orresponds to the partile with the element, i.e. the inter-

setion of the triangle and the irle. The total area of the irle will be denoted A0 and

it is simply alulated as: A0 = πa2. Note that, in a general ase, the real intersetion
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is smaller than the total irle area, AT =
∑ne

e=0A
p
e < A0. The areas oloured yan and

magenta help the de�nition of two types of auxiliary regions that will be useful for the

determination of Ap
e and x̄

p
e:

• Segments: Outer or inner areas of the irle that are ompletely ut only by an

edge.

• Spikes: Outer or inner areas of the triangle, ut by the irle, whih ontain only

one vertex.

With the above de�nitions we an say that �gure C.1 ontains an outer spike on vertex

v
3
and two outer segments, one on edge e

2
and another one on edge e

3
.

In general, the area and entroid of any geometry omposed by basi parts with areas

A1, A2, A3, . . . , Anm
and entroids x̄

1, x̄2, x̄3, . . . x̄nm
an be de�ned by:

Ap
e =

m=nm
∑

m=0

Am
(C.1a)

x̄
p
e =

∑m=nm

m=0 x̄
m · Am

Ap
e

(C.1b)

Where the area will be introdued with sign to onsider the ase of subtration.

Basi geometry de�nitions

Cirle

Air = π a2 (C.2a)

x̄
ir = Cπ (C.2b)

Triangle

Atri = 1/2
∥

∥e1 × e2
∥

∥

(C.3a)

x̄
tri = 1/3

(

v
1 + v

2 + v
3
)

(C.3b)
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Setor

Figure C.2: Possible ases of setor from the intersetion of a irle and a triangle

Ase =
1

2
a2θ (C.4a)

x̄
se = Cπ +

4 a · sin(θ/2)
3 θ

· ne2
(C.4b)

Segment

Aseg = Ase ± Atri

(C.5a)

x̄
seg =

x̄
se · Ase ± x̄

tri · Atri

Aseg

(C.5b)

Spikes

Figure C.3: Spike de�ned from the intersetion of a irle and a triangle
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Aspk = Atri(pint

1 ,v2,pint

2 ) + Aseg(pint

1 ,Cπ,p
int

2 ) (C.6a)

x̄
spk =

x̄
tri(pint

1 ,v2,pint

2 ) · Atri(pint

1 ,v2,pint

2 ) + x̄
seg(pint

1 ,Cπ,p
int

2 ) · Aseg(pint

1 ,Cπ,p
int

2 )

Aspk

(C.6b)

Classi�ation table

Aiming to have an e�ient way to ompute the intersetions Ap
e and their entroids,

a lassi�ation is suggested here whih divides the possible on�gurations in 8 di�er-

ent ases whih are easy and fast to identify. The lassi�ation is based on two riteria:

Number of verties irumsribed in the irle and number of edges rossed by the irle.

Figure C.4: Possible intersetion between sphere and triangle
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Eah of the ase is determined by omposition of the di�erent geometrial elements

involved:

One the ase is determined by applying simple geometry, a spei� proedure is applied:

(a) Evaluate the full irle.

(b) Subtrat the only segment from the irle.

() Subtrat the two segments from the irle.

(d) Subtrat the three segments from the irle.

(e) Evaluate the only spike.

(f) Substrat the two spikes from the triangle.

(g) Subtrat the only spike from the triangle.

(h) Evaluate the full triangle.
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