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Abstra
t

This works en
ompasses a broad review of the basi
 aspe
ts of the Dis
rete Element

Method for its appli
ation to general granular material handling problems with spe
ial

emphasis on the topi
s of parti
le-stru
ture intera
tion and the modelling of 
ohesive

materials. On the one hand, a spe
ial 
onta
t dete
tion algorithm has been developed

for the 
ase of spheri
al parti
les representing the granular media in 
onta
t with the

�nite elements that dis
retize the surfa
e of rigid stru
tures. The method, named Dou-

ble Hierar
hy Method, improves the existing state of the art in the �eld by solving the

problems that non-smooth 
onta
t regions and multi 
onta
t situations present. This

topi
 is later extended to the 
onta
t with deformable stru
tures by means of a 
oupled

DE-FE method. To do so, a spe
ial pro
edure is des
ribed aiming to 
onsistently trans-

fer the 
onta
t for
es, whi
h are �rst 
al
ulated on the parti
les, to the nodes of the FE

representing the solids or stru
tures. On the other hand, a model developed by Oñate

et al. for the modelling of 
ohesive materials with the DEM is numeri
ally analysed to

draw some 
on
lusions about its 
apabilities and limitations.

In parallel to the theoreti
al developments, one of the obje
tives of the thesis is to pro-

vide the industrial partner of the do
toral programme, CITECHSA, a 
omputer software


alled DEMPa
k (www.
imne.
om/dem/) that 
an apply the 
oupled DE-FE pro
edure

to real engineering proje
ts. One of the remarkable appli
ations of the developments

in the framework of the thesis has been a proje
t with the 
ompany Weatherford Ltd.

involving the simulation of 
on
rete-like material testing.

The thesis is framed within the �rst graduation (2012-13) of the Industrial Do
torate

programme of the Generalitat de Catalunya. The thesis proposal 
omes out from the

agreement between the 
ompany CITECHSA and the resear
h 
entre CIMNE from the

Polyte
hni
al University of Catalonia (UPC).



Resum

Aquest treball 
ompèn una àmplia revisió dels aspe
tes bàsi
s del Mètode dels Ele-

ments Dis
rets (DEM) per a la seva apli
a
ió genèri
a en problemes que involu
ren la

manipula
ió i transport de material granular posant èmfasi en els temes de la intera

ió

partí
ula-estru
tura i la simula
ió de materials 
ohesius. Per una banda, s'ha desen-

volupat un algoritme espe
ialitzat en la dete

ió de 
onta
tes entre partí
ules esfèriques

que representen el medi granular i els elements �nits que 
onformen una malla de su-

perfí
ie en el modelatge d'estru
tures rígides. El mètode, anomenat Double Hierar
hy

Method, suposa una millora en l'estat de l'art existent en solu
ionar els problemes que

deriven del 
onta
te en regions de transi
ió no suau i en 
asos amb múltiples 
onta
tes.

Aquest tema és posteriorment estès al 
onta
te amb estru
tures deformables per mitjà

de l'a
oblament entre el DEM i el Mètode dels Elements Finits (FEM) el qual governa

la solu
ió de me
àni
a de sòlids en l'estru
tura. Per a fer-ho, es des
riu un pro
ediment

pel qual les for
es de 
onta
te, que es 
al
ulen en les partí
ules, es transfereixen de forma


onsistent als nodes que formen part de l'estru
tura o sòlid en qüestió. Per altra banda,

un model desenvolupat per Oñate et al. per a modelar materials 
ohesius mitjançant el

DEM és analitzat numèri
ament per tal d'extreure 
on
lusions sobre les seves 
apa
itats

i limita
ions.

En paral·lel als desenvolupaments teòri
s, un dels obje
tius de la tesi és proveir al part-

ner industrial del programa do
toral, CITECHSA, d'un software anomenat DEMpa
k

(http://www.
imne.
om/dem/) que permeti apli
ar l'a
oblament DEM-FEM en pro-

je
tes d'enginyeria reals. Una de les apli
a
ions remar
ables dels desenvolupaments en

el mar
 de la tesi ha estat un proje
te per l'empresa Weatherford Ltd. que involu
ra la

simula
ió de tests en provetes de materials 
imentosos tipus formigó.

Aquesta tesi do
toral s'emmar
a en la primera promo
ió (2012-13) del programa de

Do
torats Industrials de la Generalitat de Catalunya. La proposta de tesi prové de

l'a
ord entre l'empresa CITECHSA i el 
entre de re
er
a CIMNE de la Universitat

Politè
ni
a de Catalunya (UPC).
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Chapter 1
Introdu
tion

Truesdell and Noll in the introdu
tion of The Non-Linear Field Theories of Me
hani
s

[129℄ state:

Whether the 
ontinuum approa
h is justi�ed, in any parti
ular 
ase, is a

matter, not for the philosophy or methodology of s
ien
e, but for the experi-

mental test. . .

The ones that agree on that statement may also agree that the same applies for the

dis
ontinuum approa
h in whi
h the Dis
rete Element Method is framed on.

Before the introdu
tion of the Dis
rete Element Method in the 70's, lot of e�ort has

been pla
ed in developing 
onstitutive models for the ma
ros
opi
 des
ription of parti-


le �ows. However, the 
ontinuum based methods fail to predi
t the spe
ial rheology of

granular materials whi
h 
an rapidly 
hange from a solid-like behaviour in zones where

the deformation is small and rather homogeneous to a �uid-like behaviour with huge

variation and distortion that 
an be 
on
entrated in narrow areas su
h as shear bands.

Within the DEM this behaviour, whi
h is driven by the 
ollisional and fri
tional me
h-

anisms of the material, 
an be simulated at the grain level where ea
h dis
rete element


orresponds to a physi
al parti
le. The quality of the results depends then on the a

u-

ra
y in the representation of the shape of the parti
les and their intera
tion.

The DEM is nothing else than Mole
ular Dynami
s with rotational degrees of free-

dom and 
onta
t me
hanisms. In its �rst 
on
eption, the method was designed for
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simulations of dynami
 systems of parti
les where ea
h element is 
onsidered to be an

independent and non deformable entity whi
h intera
ts with other parti
les by the laws

of the 
onta
t me
hani
s and moves following the Newton-Euler equations.

The simpli
ity of the method is in 
ontrast however, with the high 
omputation 
ost

whi
h, in general, has asso
iated to it due to the large number of parti
les needed in a

real simulation and the time s
ales that have to be resolved. Imagine a hooper dis
harge

problem whi
h may require the 
omputation of millions of parti
les simulated during

tens of minutes when, at the same time, the phenomena that rules the problem lies in

reprodu
ing the behaviour of individual parti
les the intera
tion of whi
h happens in

distan
es several orders of magnitude smaller than their parti
le diameter. This implies

that the ne
essary time steps to be used in the simulation have to be smaller than the


hara
teristi
 
onta
t duration.

In this sense, the implementation of the method using massive parallelization is some-

thing of 
ru
ial importan
e. Also the use of simple geometries su
h as spheres presents

a great di�eren
e to other more 
omplex geometries su
h as polyhedra, NURBS, et
. in

the dete
tion and 
hara
terization of the 
onta
ts. That is why still today the use of

basi
 spheres is intensively used.

In many real appli
ations involving granular materials, the intera
tion with stru
tures

and �uids are present. The employment of the FEM to simulate the stru
tures involved

in those industrial appli
ations 
an provide better understanding of the problem and,

therefore, 
ould play an important role in the pro
ess of design optimization. To that

end an e�
ient 
oupling of the method with a FEM-based solver for solids is of spe
ial

interest.

Another �eld of interest of the appli
ation of the DEM is the simulation of material fra
-

turing. The DEM as a dis
ontinuum-based method has attra
tive features in 
ontrast

to 
ontinuum-based methods in problems where large deformations and fra
ture are

involved. Many attemps have been done aiming to unify both the modelling of the me-


hani
al behaviour of solid and parti
ulate materials, in
luding the transition from solid

phase to parti
ulate phase. Nowadays however, the DEM still presents many drawba
ks

and la
k of reliability in the modelling of solids. Di�erently from other parti
le-based
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methods su
h as MPM, PFEM or SPH, the DEM shall not be regarded as a dis
retiza-

tion method for the solution of PDE.

The interest in the Dis
rete Element Method has exponentially in
reased sin
e the

publi
ation in 1979 of the �rst arti
le by Cundall and Stra
k [24℄ and is still a hot topi


nowadays. This 
an be seen in �g. 1.1 where the number of publi
ations related to

dis
rete element pro
edures from 1979 to 2016 are displayed. They were obtained from

Google S
holar with the following keywords in the title of the arti
le: 'Dis
rete Element

Method/Model', or 'Distin
t Element Method/Model', or 'Using a DEM' or 'A DEM'

or 'With the DEM' or 'DEM Simulation'. This does not in
lude all the publi
ations

related to DEM and may introdu
e other non related arti
les, however it gives a good

image of the tenden
y of resear
h in the �eld.
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Figure 1.1: Number of publi
ations from 1979 to 2016 obtained from Google S
holar

with the following keywords in the title of the arti
le: 'Dis
rete Element Method/Model',

or 'Distin
t Element Method/Model', or 'Using a DEM' or 'A DEM' or 'With the DEM'

or 'DEM Simulation'.

There is a great interest in the appli
ation of this method to a wide range of industrial

problems.
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1.1 DE-FE 
ouplings

The term 
oupled DE-FE or 
ombined DE-FE Method for soil and solid me
hani
s

appli
ations appears in the literature with di�erent meanings and 
an be quite 
onfusing.

The most 
ommon ones are grouped here in 5 
ategories along with an example �gure

(Fig. 1.2). Other 
ategories for DE-FE 
ouplings are for instan
e 
oupling with �uids,

thermal problems, et
.

(a) Parti
le-stru
ture intera
tion: The two domains are 
al
ulated separately and

their 
ommuni
ation is through 
onta
t models. This is the 
ategory in whi
h the

thesis is mainly fo
used on. It is developed in Se
tion 4.

(b) Two-s
ale models: These methods solve the problem at two di�erent s
ales.

The mi
ro-ma
ro transition is a

omplished employing an overlapping zone to

provide a smooth transition between a DE model (mi
ro) and a FE material

des
ription (ma
ro). The 
oupling is a
hieved by the imposition of kinemati



onstrains between the two domains. The original idea was presented by Xiao and

Belyts
hko [143℄ for Mole
ular Dynami
s, Wellmann [136℄ applied it to granular

material while Rojek and Oñate [106℄ developed it for 
ohesive materials.

(
) Proje
tion te
hniques: Coarse-graining, averaging and other proje
tion te
h-

niques are used to derive 
ontinuum �elds out of dis
rete quantities. To do so,

often a referen
e mesh is required either for the 
al
ulation or simply for the rep-

resentation of the 
ontinuum results [64℄.

(d) Embedded DE on FE: This te
hnique 
onsists on embedding (typi
ally spher-

i
al) parti
les in the boundaries of FE models of solids and stru
tures in order

to dete
t and enfor
e the 
onta
t [11℄. Re
ently, this te
hnique has been applied

to multi-fra
turing in 
ohesive materials [146℄. A FE-based method with failure

or 
ra
k propagation models is 
ombined with embedded parti
les that assist the

dete
tion and 
hara
terization of the 
onta
t for
es.

(e) FE dis
retization of dis
rete entities: This 
ategory involves methods that use

a FE dis
retization to 
al
ulate the deformation of the parti
les and solve their

intera
tion using a DEM-like te
hnique [40℄. A parti
ular 
ase is the so 
alled

DEM-Blo
k method [69℄ whi
h 
onsists on a FE-based Method whi
h elements

are 
onne
ted through breakable spring-like bounds imitating the 
ohesive DE

models.
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(a) Parti
le-Stru
ture (b) Two-s
ale. Taken from: Labra [63℄

(
) Proje
tion onto a FE

mesh

(d) Embedded parti
les.

Taken from: Zárate and

Oñate [146℄

(e) Dis
retized DE. Taken

from: Gethin et al. [40℄

Figure 1.2: Examples of di�erent te
hniques that 
ombine FE and DE methods

1.2 Obje
tives

This thesis has been developed in the framework of the �rst graduation of Do
torats

Industrials de la Generalitat de Catalunya (Industrial Do
torates of Catalonia). The

obje
tives de�ned for this work 
omprise an agreement between the resear
h line de-

termined by the resear
h 
entre CIMNE in the Polyte
hni
al University of Catalonia

(UPC) and the business obje
tives of the so
iety CITECHSA whi
h is interested in

the exploitation of a DEM-based software in its appli
ation to industrial engineering

problems. In this regard, the obje
tives involve resear
h, development of a 
ode and

edu
ational and dissemination a
tions.

On the one hand, the resear
h has to be fo
used in a deep revision of the state of the art

of the Dis
rete Element Method in order to analyse and sele
t the existing te
hniques

that have to be adapted and implemented for the solution of the problems of interest
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whi
h are basi
ally three:

• General appli
ation of DEM to granular material handling problems

• Parti
le-stru
ture intera
tion

• DE models for the simulation of 
ohesive materials

The resear
h has to be 
ondu
ted from a general point of view determining the advan-

tages and drawba
ks of the existing methods and proposing new developments that 
an

improve the state of the art. The theoreti
al 
ontributions will be 
ommuni
ated by

dissemination a
tions.

The theoreti
al resear
h in the above-mentioned topi
s have to a

ompanied by its im-

plementation into the open-sour
e 
ode DEMpa
k (www.
imne.
om/dem). The 
ode

will be developed with 
on
erns on e�
ien
y and parallelism as it is devised to be em-

ployed in real appli
ation proje
ts. To that end, several GUIs for spe
i�
 appli
ations

will be developed. This will be done forming part of a larger group of resear
hers that


ontribute to the development of the 
ode.

Finally, the developments will be applied in ongoing proje
ts of the resear
h 
entre.

1.3 Organization of this work

The do
ument is stru
tured as follows:

After the introdu
tion and the obje
tives, 
hapter two reviews the basi
 aspe
ts of

the Dis
rete Element Method that will set the basis upon whi
h the developments in the

thesis are established. It in
ludes a revision of the most 
ommon 
onta
t models and

integration methods. An assessment on performan
e, a

ura
y and stability is given to

help 
hoosing the most appropriate integration s
heme. The treatment of 
lusters of

spheres for the representation of non-spheri
al parti
les and the 
onta
t dete
tion are

also dis
ussed in detail.

Chapter three is dedi
ated to the 
onta
t dete
tion between spheri
al Dis
rete Ele-

ments and triangular or planar quadrilateral Finite Elements. The 
hapter starts with
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a 
omplete review of the state of the art and follows with a thorough des
ription of the

strategy adopted for the global and lo
al dete
tion of 
onta
ts. The idea of using an

intermediate fast interse
tion test is introdu
ed and later proved to be e�
ient within

an appli
ation example. Regarding the lo
al resolution, the novel Double Hierar
hy

Method for 
onta
t with rigid boundaries is presented. The des
ription of the methods

is equipped with algorithm details, validation examples and limitations analysis.

The fourth 
hapter introdu
es the DE-FE 
oupling for the parti
le-stru
ture intera
-

tion problem. After an introdu
tion to the solid me
hani
s formulation employed, the


oupled s
heme is presented. The key point lies in the 
ommuni
ation of the 
onta
t

for
es, whi
h are 
al
ulated by the DE parti
les, to the nodes of the FEs. The des
ribed

pro
edure proposes the distribution of the for
es to all the FEs involved based on their

area of interse
tion with the parti
les. Several examples show that this strategy im-

proves the 
ommonly used dire
t interpolation approa
h for the 
ase of 
onta
ts with

deformable solids or stru
tures. The good fun
tioning of the 
oupling is assessed by

some tests with spe
ial attention pla
ed on energy 
onservation.

The topi
 of DE modelling of 
ohesive materials su
h as 
on
rete or ro
k is presented

in 
hapter �ve. It begins with an overview of the state of the art of the methods

available for this purpose together with a study of their limitations and 
apabilities.

After, the model developed by Oñate, Santasusana et al. is des
ribed along with appli-


ation examples where the numeri
al simulations and the laboratory tests are 
ompared.

Chapter six is dedi
ated to the implementation of the 
ode in the platform Kratos


onstituting the DEMpa
k software together with remarks on the e�
ien
y and paral-

lelitzation of the 
ode.

Finally, the last 
hapter 
omprises the 
on
lusions and the outlook of the work.
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1.4 Related publi
ations and dissemination

1.4.1 Papers in s
ienti�
 journals

• E. Oñate, F. Zárate, J. Miquel, M. Santasusana et al. Computational Parti
le

Me
hani
s - Springer: Lo
al 
onstitutive model for the Dis
rete Element Method.

Appli
ation to geomaterials and 
on
rete.

• M. Santasusana, J. Irazábal, E. Oñate, J.M. Carbonell. Computational Parti
le

Me
hani
s - Springer: The Double Hierar
hy Method. A parallel 3D 
onta
t method

for the intera
tion of spheri
al parti
les with rigid FE boundaries using the DEM.

1.4.2 Communi
ations in 
ongresses

• M. Santasusana, E. Oñate, M.A. Celigueta, F. Arrufat, K. Valiullin, R. Gandikota.

11th. World Congress on Computational Me
hani
s (WCCM XI): A parallelized

dis
rete element method for analysis of drill-bit me
hani
s problems in hard and

soft soils.

• C.A. Roig, P. Dadvand, M. Santasusana, E. Oñate. 11th. World Congress on

Computational Me
hani
s (WCCM XI): Minimal surfa
e partitioning for parti
le-

based models.

• M. Santasusana, E. Oñate, J.M. Carbonell, J. Irazábal, P. Wriggers. 4th. Inter-

national Conferen
e on Computational Conta
t Me
hani
s (ICCCM 2015): Com-

bined DE/FE method for the simulation of parti
le-solid 
onta
t using a Cluster-

DEM approa
h.

• E. Oñate, F. Arrufat, M. Santasusana, J. Miquel, M.A. Celigueta. 4th. Interna-

tional Conferen
e on Parti
le-Based Methods (Parti
les 2015): A lo
al 
onstitutive

model for multifra
ture analysis of 
on
rete and geomaterials with DEM.

• M. Santasusana, E. Oñate, J.M. Carbonell, J. Irazábal, P. Wriggers. 4th. In-

ternational Conferen
e on Parti
le-Based Methods (Parti
les 2015): A Coupled

FEM-DEM pro
edure for nonlinear analysis of stru
tural intera
tion with parti-


les.
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• M. Santasusana, J. Irazábal, E. Oñate, J.M. Carbonell. 7th. European Congress

on Computational Methods in Applied S
ien
es and Engineering (ECCOMAS

Congress 2016): Conta
t Methods for the Intera
tion of Parti
les with Rigid and

Deformable Stru
tures using a 
oupled DEM-FEM pro
edure.





Chapter 2
The Dis
rete Element Method

The Dis
rete Element Method (DEM) was �rstly introdu
ed by Cundall in 1971 [23℄

for the analysis of the fra
ture me
hani
s problems. Afterwards, in 1979, Cundall and

Stra
k [24℄ applied it to granular dynami
s. The DEM in its original 
on
eption sim-

ulates the me
hani
al behaviour of a system formed by a set of parti
les arbitrarily

disposed. The method 
onsiders the parti
les to be dis
rete elements forming part of a

higher more 
omplex system. Ea
h dis
rete element has an independent movement; the

overall behaviour of the system is determined by the appli
ation of 
onta
t laws in the

intera
tion between the parti
les.

There exist two main approa
hes, namely the soft and the hard parti
le approa
h. The

soft parti
le approa
h is a time-driven method where parti
les are allowed to inter-

penetrate simulating small deformations due to 
onta
t. The elasti
, plasti
 and fri
-

tional for
es are 
al
ulated out of these deformations. The method allows a

ounting for

multiple simultaneous parti
le 
onta
ts. On
e the for
es are 
al
ulated, the motion of

the parti
les is earned from the appli
ation of the 
lassi
al Newton's law of motion whi
h

is usually integrated by means of an expli
it s
heme. The hard-parti
le approa
h, on

the other hand, is an event-driven method whi
h treats the 
onta
ts as instantaneous

and binary (no-multi 
onta
t). It uses momentum 
onservation laws and restitution


oe�
ients (inelasti
 or fri
tional 
onta
ts) to determine the states of parti
les after a


ollision. These assumptions are only valid when the intera
tion time between parti
les

is small 
ompared to the time of free motion. A good review and 
omparison of the

methods 
an be found in [59℄. This thesis is developed using the soft-parti
le approa
h.
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The DEM, as a parti
le method, has been used in a very wide range of appli
ations.

An important de
ision to take is to sele
t whi
h is the relation between a dis
rete ele-

ment in the simulation and the physi
al parti
les or media in the reality. On the one

hand, the one-to-one approa
h tries to assign a dis
rete element to every parti
le in

the domain. The method des
ribes all the 
onta
t and other intera
tion for
es between

parti
les with a model that only depends on the lo
al relations and does not require

�tting. On the other hand, a very 
ommon approa
h is to simulate granular matter

or other media using dis
rete elements that represent a higher amount of material than

just one parti
le. This te
hnique, known as 
oarse-graining or up-s
aling [37℄, represents

a 
ompletely phenomenologi
al approa
h whi
h does require the �tting of parameters

out of bulk experiments. Both te
hniques are used to simulate parti
ulate matter that

ranges from powder parti
les (µm) to the simulation of ro
k blo
ks (m).

Common appli
ations of the Dis
rete Element Method are the simulation of granular

mater in soil me
hani
s. A soil 
an deform as a solid or �ow as a �uid depending on

its properties and the situation. The use of DEM 
omes naturally as it 
an handle

both behaviours of the soil and also a

ount for dis
ontinuous and very large defor-

mations [49, 54, 136℄. The DEM adapts also perfe
tly to the simulation of granular

material handling in industrial pro
esses. Some examples of appli
ations are silo �ows

[59, 150℄, s
rew-
onveyors [99, 100℄, vibrated beds [4, 21℄, ball mill pro
esses [56, 84℄, et
.

Another appli
ation whi
h is of spe
ial attention in this thesis is the parti
le-stru
ture

intera
tion problem. This 
ategory en
ompasses, among others, parti
le-tyre simulations

[49, 91℄, shot peening pro
esses [43, 90℄, impa
ts with �exible barriers [67℄, soil-stru
ture

intera
tion [26, 136℄, et
. Some examples of appli
ations are presented in se
tion 6.3.

In parti
le-�uid �ow modelling, the di�
ulty relies on the parti
ulate phase rather than

�uid phase. Therefore, a 
oupled CFD-DEM approa
h [149℄ is attra
tive be
ause of its


apability to 
apture the parti
le physi
s. This 
omprehends a large family of appli
a-

tions whi
h in
ludes gas �uidization, pneumati
 
onveying �ows, parti
le 
oating, blast

furna
e, et
. [150℄. Appli
ations in 
ivil and marine engineering are ro
k avalan
hes into

water reservoirs [127℄, sediment and bed-load transportation in rivers and sea [16, 30, 77℄,

et
. A 
omprehensive literature review on the appli
ations of DEM to the simulation of

parti
ulate systems pro
esses 
an be found in the work published by Zhu et al. [150℄.
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In re
ent years the DEM has also been obje
t of intense resear
h to the study of multi-

fra
ture and failure of solids involving geomaterials (soils, ro
ks, 
on
rete), masonry and


erami
 materials, among others. Some key developments 
an be found in [29, 52, 65, 96℄.

In the 
ohesive models the 
onta
t law 
an be seen as the formulation of the material

model on the mi
ros
opi
 level. Cohesive bonds 
an be broken, whi
h allows to simulate

the fra
tures in the material and its propagation. The analysis of solid materials within

the DEM poses however, a number of di�
ulties for adequately reprodu
ing the 
orre
t


onstitutive behaviour of the material under linear (elasti
) and non-linear 
onditions

(se
tion 5).

2.1 Basi
 steps for DEM

From a 
omputational point of view a basi
 DEM algorithm 
onsists of three basi
 steps:

Figure 2.1: Basi
 
omputational s
heme for the DEM

After an initialization step, the time loop starts. First, the neighbouring parti
les for

every dis
rete element needs to be dete
ted (se
tion 2.2) as well as the 
onta
t with

rigid boundaries in
luded in the simulation domain (
hapter 3). Afterwards, for every


onta
ting pair a the 
onta
t model is applied (se
tion 2.5) to determine the for
es and

torques that have to be added to the rest of a
tions to be 
onsidered on a parti
le.

Finally, given all the for
es and the torques, the equations of motion are integrated and

the parti
le's new position is usually 
al
ulated by means of an expli
it time mar
hing

s
heme (se
tion 2.6). At this point, new 
onta
ts have to be dete
ted and thus, the loop

starts again. This sequen
e repeats over time until the simulation 
omes to an end.
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2.2 Conta
t dete
tion

Due to the method formulation, the de�nition of appropriate 
onta
t laws is fundamen-

tal and a fast 
onta
t dete
tion is something of signi�
ant importan
e in DEM. Conta
t

status between individual obje
ts, whi
h 
an be two DE parti
les or a DE parti
le and

a boundary element (
hapter 3), 
an be 
al
ulated from their relative position at the

previous time step and it is used for updating the 
onta
t for
es at the 
urrent step. The

relative 
ost of the 
onta
t dete
tion over the total 
omputational 
ost is generally high

in DEM simulations. Therefore, the problem of how to re
ognize all 
onta
ts pre
isely

and e�
iently has re
eived 
onsiderable attention in the literature [86, 139℄.

Traditionally, the 
onta
t dete
tion is split into two stages: Global Neighbour Sear
h

and Lo
al Conta
t Resolution. By the appli
ation of this split the 
omputational 
ost


an be redu
ed from O(N2), in an all-to-all 
he
k, to O(N · ln(N)).

Global Conta
t Sear
h

It 
onsists on lo
ating the list of potential 
onta
t obje
ts for ea
h given target body.

There are two main basi
 s
hemes: the Grid/Cell based algorithms and the Tree based

ones, ea
h of them with numerous available versions in the literature.

Figure 2.2: Grid/Cell-based stru
ture Figure 2.3: Tree-based stru
ture

In the Grid based algorithms [87, 89, 140℄ a general re
tangular grid is de�ned dividing

in 
ells the entire domain (�gure 2.2). A simple bounding box (re
tangular or spheri
) is

adopted to 
ir
ums
ribe the dis
rete elements (of any shape) and is used to 
he
k in a ap-

proximate way whi
h are the 
ells that have interse
tion with it. Those interse
ting 
ells,

store in their lo
al lists the parti
les 
ontained in the bounding boxes. The potential

neighbours for every target parti
le are determined by sele
ting all the elements stored

in the di�erent 
ells where the bounding box of that target parti
le has been assigned to.
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In the Tree based algorithms [12, 38, 68, 138℄ ea
h element is represented by a point

p at 
oordinates Xp
. Starting from a 
entred one, it splits the domain into two sub-

domains. Points that have larger 
oordinate (X i ≥ X i
p
) are pla
ed in one sub-domain

while points with smaller 
oordinates (X i < X i
p
) in the other sub-domain. The method

pro
eeds for next points alternating every time the splitting dimension i and obtaining

a tree stru
ture like the one shown in �gure 2.3. On
e the tree is 
onstru
ted, for every

parti
le the nearest neighbours is determined following the tree in upwind dire
tion.

Han et al [42℄ 
ompared the most 
ommon Global Neighbour Sear
h algorithms (
ell-

based and tree-based) in simulations with spheri
al parti
les. Numeri
al tests showed

better performan
e for the 
ell based algorithms (D-Cell [140℄ and NBS [87℄) over the

tree-based ones (ADT [12℄ and SDT [38℄), spe
ially for large-s
ale problems. It should

be noted also that the e�
ien
y depends on the 
ell dimension and, in general, the size

distribution 
an a�e
t the performan
e. Han et al [42℄ suggest a 
ell size of three times

the average dis
rete obje
t size for 2D and �ve times for 3D problems. It is worth noting

that, using these or other e�
ient algorithms, the 
ost of the Global Neighbour Sear
h

represents typi
ally less than 5 per
ent of the total 
omputation while the total 
ost of

the sear
h 
an rea
h values over 75 per
ent [49℄, spe
ially when the sear
h involves non-

spheri
al geometries sin
e it requires, in general, the resolution of a non-linear system

of equations (see the 
ase of superquadri
s [15, 136℄ or polyhedra [14, 32, 94℄). In this

sense, the fo
us should be pla
ed on the Lo
al Conta
t Resolution 
he
k rather than on

optimizing the Global Neighbour Sear
h algorithms.

Lo
al Resolution Che
k

The lo
al 
onta
t dete
tion basi
ally 
onsists in determining whi
h of the potential

neighbours found during the global sear
h algorithm 
onstitute an a
tual 
onta
t with

the target parti
le and to determine their 
onta
t 
hara
teristi
s (point of 
onta
t, nor-

mal dire
tion, et
.). The 
ase of spheres is trivial (�g. 2.4), 
onta
t exists if the following


ondition is met:

‖Ci −Cj‖ < Ri +Rj (2.1)

and the normal and point of 
onta
t 
an be easily determined as it will be detailed in

se
tion 2.4.
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Figure 2.4: Spheri
al parti
les in 
onta
t

The problem of 
onta
t determination be
omes 
omplex and time 
onsuming when

other geometries su
h as superquadri
s, polyhedra or NURBS are used to represent

the parti
les or boundaries. A way to improve the e�
ien
y is to take advantage of

the temporal 
oheren
e. Normally the duration of a 
onta
t is en
ompassed by several


al
ulation time steps and therefore the parti
le positions will only 
hange a little bit.

In this regard, it seems wise to perform the 
onta
t dete
tion after several time steps

instead of at every time step aiming to redu
e the 
omputational 
ost that it involves.

However, if the 
onta
ts are not determined when the parti
les start to 
ollide, the in-

dentations will a
hieve high values whi
h will lead to ina

urate results and numeri
al

instabilities (se
tion 2.6.4).

A possible solution for this issue is the use of a te
hnique known as Verlet neighbouring

lists [131, 136℄. It 
onsists on using enlarged bounding boxes in the global sear
h so that

more remote parti
les are stored as well. This lo
al Verlet list need no update during

several time steps sin
e the parti
les move only small distan
es every step. This way it


an be assured that no 
onta
ts are missed along the simulation and the frequen
y of

the sear
h is redu
ed. This method is e�
ient for 
ases with high dispersion of parti
les.

In the framework of this dissertation, a basi
 
ell-based algorithm [140℄ is 
hosen whi
h

has been parallelized using OMP. The geometries used for the parti
les are only spheres

or 
lusters of spheres and thus the lo
al dete
tion is e�
ient. The treatment of the


onta
t with FE representing rigid or deformable boundaries is extensively dis
ussed in


hapter 3.
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2.3 Equations of motion

In the basi
 soft parti
le DEM approa
h the translational and rotational motion of

parti
les are de�ned by the standard equations for the dynami
s of rigid bodies. For

the spe
ial 
ase of spheri
al parti
les, these equations 
an be written as:

m ü = F (2.2)

I ω̇ = T (2.3)

where u, u̇, ü are respe
tively the parti
le 
entroid displa
ement, its �rst and se
ond

derivative in a �xed 
oordinate system X, m is the parti
le mass, I the inertia tensor,

ω is the angular velo
ity and ω̇ the angular a

eleration.

The for
es F and the torques T to be 
onsidered at the equations of motion (eq. 2.2

and eq. 2.3) are 
omputed as the sum of:

(i) all for
es F
ext

and torques T
ext

applied to the parti
le due to external loads.

(ii) all the 
onta
t intera
tions with neighbouring spheres and boundary �nite elements

F
ij
, j = 1, · · · , nc

, where i is the index of the element in 
onsideration and j the

neighbour index of the entities (parti
les or �nite elements) being in 
onta
t with

it.

(iii) all for
es F
damp

and torques T
damp

resulting from external damping.

This 
an be expressed for every parti
le i as:

Fi = F
ext

i +

nc
∑

j=1

F
ij + F

damp

i (2.4)

Ti = T
ext

i +
nc
∑

j=1

r
ij
c × F

ij +T
damp

i (2.5)

where r
ij
c is the ve
tor 
onne
ting the 
entre of mass of the i-th parti
le with the 
onta
t

point Pcij with the j-th parti
le (eq. 2.8). F
ij
and F

ji
satisfy (Fij = −F

ji). Fig. 2.5

shows 
onta
t for
es between two spheri
al parti
les.
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The rotational movement equation (2.3) is a simpli�ed version of the Euler equations


oming from the fa
t that a sphere has 
onstant 
oe�
ients for its three prin
ipal inertia

axes whi
h are independent of the frame. The 
omplete equations 
an be found in se
tion

2.7 where the 
ase of generi
 parti
le shapes is dis
ussed.

2.4 Conta
t kinemati
s

The for
es and torques that develop from a 
onta
t event are derived from the 
onta
t

kinemati
s at the point of 
onta
t Pc
ij
. The lo
al referen
e frame in the 
onta
t point

is de�ned by a normal n
ij
and a tangential t

ij
unit ve
tors as shown in �gure 2.5.

(a) Conta
t between two parti
les (b) Conta
t for
e de
omposition

Figure 2.5: Kinemati
s of the 
onta
t between two parti
les

The normal is de�ned along the line 
onne
ting the 
entres of the two parti
les and

dire
ted outwards from parti
le i.

n
ij =

Cj −Ci

‖Cj −Ci‖
(2.6)

The indentation or inter-penetration is 
al
ulated as:

δn = Ri +Rj − (Cj −Ci) · nij
(2.7)

where Cj , C i are the 
entre of the parti
les and Ri, Rj their respe
tive radius.

The ve
tors from the 
entre of parti
les to the 
onta
t point rij
c and rji

c are in general

dependent on the 
onta
t model. they should take into a

ount the 
ontribution of ea
h
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parti
le to the equivalent sti�ness of the system. Eq. 2.8 des
ribes the simple 
ase of

two linear springs with di�erent Young's modulus set in serial:

rij
c =

(

Ri +
Ej

Ei + Ej
δn

)

n
ij

(2.8)

The position of the 
onta
t point 
an then be determined from any of the parti
les:

Pcij = Ci + rij
c = Cj + rji

c (2.9)

The velo
ity v
ij
at the 
onta
t point is determined by eq. 2.10 taking into a

ount the

angular and translational velo
ities of the 
onta
ting parti
les, as shown in �g. 2.5.

v
ij =

(

ωj × rji
c + vj

)

−
(

ωi × rij
c + vi

)

(2.10)

In 
ase of 
onta
t with a boundary b, the velo
ity of the rigid (or deformable) stru
ture

at the 
onta
t point has to be determined. If �nite elements are used to dis
retize

the boundaries, typi
ally the velo
ities 
an be interpolated from the nodal velo
ities by

means of the shape fun
tions Nk (see 
hapter 4). Equation 2.10 is then modi�ed to:

v
ib =

nb
∑

k=0

Nk(Pcib) · vk −
(

ωi × rij
c + vi

)

(2.11)

The velo
ity at the 
onta
t point 
an be de
omposed in the lo
al referen
e frame de�ned

at the 
onta
t point as:

v
ij
n =

(

v
ij · nij

)

· nij
(2.12a)

v
ij
t = v

ij − v
ij
n (2.12b)

And thus, the de�nition of the tangential unit ve
tor be
omes:

t
ij =

v
ij
t

∥

∥v
ij
t

∥

∥

(2.13)
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Now the 
onta
t for
e F
ij
between the two intera
ting spheres i and j 
an be de
om-

posed into its normal F
ij
n and tangential F

ij
t 
omponents (Fig. 2.5):

F
ij = F

ij
n + F

ij
t = Fnn

ij + Ftt
ij

(2.14)

The for
es Fn, Ft are obtained using a 
onta
t 
onstitutive model. Standard models in

the DEM are 
hara
terized by the normal kn and tangential kt sti�ness, normal dn and

tangential dt lo
al damping 
oe�
ients at the 
onta
t interfa
e and Coulomb fri
tion


oe�
ient µ represented s
hemati
ally in Fig. 2.6 for the 
ase of two dis
rete spheri
al

parti
les.

Figure 2.6: DEM standard 
onta
t rheology

Some of the most 
ommon models are detailed in the next se
tion 2.5. The models used

in a 
ombined DE-FE strategy are des
ribed in Chapter 4.

2.5 Conta
t models

The 
onta
t between two parti
les poses in general a 
omplex problem whi
h is highly

non-linear and dependent on the shape, material properties, relative movement of the

parti
les, et
. Theoreti
ally, it is possible to 
al
ulate these for
es dire
tly from the

deformation that the parti
les experien
e during the 
onta
t [55℄. In the framework of

the DEM however, simpli�ed models are used whi
h depend on a few 
onta
t parame-

ters su
h as the parti
les relative velo
ity, indentation, radius and material properties

su
h as the Young's modulus and Poisson's ratio toghether with some parameters that

summarize the lo
al loss of energy during the 
onta
ts.
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The most 
ommon model is the so-
alled linear spring-dashpot model (LS+D) proposed

by Cundall and Stra
k [24℄ whi
h has an elasti
 sti�ness devi
e and a dashpot whi
h in-

trodu
es vis
ous (velo
ity-dependent) dissipation. This model, while being the simplest

one, happens to yield ni
e results as des
ribed in the work from Di Renzo and Di Maio

[28℄ for the 
ase of elasti
 
ollisions and in the work of Thornton [125℄ for the 
ase of

inelasti
 
ollisions. This model is des
ribed in se
tion 2.5.1.

In a se
ond level of 
omplexity, we �nd models that derive from the theory of Hertz-

Mindlin and Deresiewi
z. Hertz [47℄ proposes that the relationship between the normal

for
e and normal displa
ement is non-linear. Mindlin and Deresiewi
z [82℄ proposed a

general tangential for
e model where the for
e-displa
ement relationship depends on the

whole loading history as well as on the instantaneous rate of 
hange of the normal and

tangential for
e or displa
ement. This model was adapted to the DEM by Vu-Quo
 and

Zhang [132℄ and later by Di Renzo and Di Maio [28℄. This model is quite 
ompli
ated

and requires high 
omputational e�ort. Other simpli�ed models exist [28, 125, 130℄

whi
h 
onsider only the non-slip regime of the Mindlin theory [81℄. The model pre-

sented in se
tion 2.5.2 is the simpli�ed model by Thornton et al. [125℄, labeled HM+D.

Other models exist in literature whi
h introdu
e plasti
 energy dissipation in a non-

vis
ous manner. This in
ludes the semi-lat
hed spring for
e-displa
ement models of

Walton and Braun [133℄ whi
h uses, for the normal dire
tion, di�erent spring sti�nesses

for loading and unloading. Similarly, Thornton [123℄ introdu
ed a model in whi
h the

evolution of the 
onta
t pressure 
an be approximated by an elasti
 stage up to some

limit followed by a plasti
 stage.

Unless the 
ontrary is spe
i�ed, the HM+D 
onta
t law will be used in examples of the

thesis. In general, the 
riterion suggested here is to employ this model with the real

material parameters whenever the physi
s of the 
onta
t have in�uen
e in the simulation

results. In other 
ases, where the details of the 
onta
ts are not relevant, both linear and

Hertzian 
onta
t laws 
an be used as a mere penalty te
hnique being the sti�ness value a

trade-o� between simulation time and admissible interpenetration. The model presented

for the 
ohesive materials in 
hapter 5 is an extension of the linear law (LS+D).
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2.5.1 Linear 
onta
t law (LS+D)

The model presented here 
orresponds to a modi�
ation of the original model from

Cundall and Stra
k [24℄ in whi
h the damping for
e is in
luded in the way the 
onta
t

rheology has been presented (�gure 2.6).

Normal for
e

In the basi
 linear 
onta
t law the normal 
onta
t for
e Fn is de
omposed into the elasti


part Fne and the damping 
onta
t for
e Fnd:

Fn = Fne + Fnd (2.15)

The damping part is a vis
ous for
e whi
h models the loss of energy during a 
onta
t.

It also serves as a numeri
al artifa
t that helps to de
rease os
illations of the 
onta
t

for
es whi
h is useful when using an expli
it time s
heme.

Normal elasti
 for
e

The elasti
 part of the normal 
ompressive 
onta
t for
e Fne is, in the basi
 model,

proportional to the normal sti�ness kn and to the indentation (or interpenetration) δn

(eq. 2.7) of the two parti
le surfa
es, i.e.:

Fne = knδn (2.16)

Sin
e no 
ohesive for
es are a

ounted in the basi
 model. eq. 2.16 holds only if δn > 0,,

otherwise Fne = 0. The 
ohesive 
onta
t will be 
onsidered in Chapter 5.

Normal 
onta
t damping

The 
onta
t damping for
e is assumed to be of vis
ous type and given by:

Fnd = cn · δ̇n (2.17)

where δ̇n is the normal relative velo
ity of the 
entres of the two parti
les in 
onta
t,

de�ned by:

δ̇n = −(Ċj − Ċi) · nij
(2.18)
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The damping 
oe�
ient cn is taken as a fra
tion ξ of the 
riti
al damping cc for the

system of two rigid bodies with masses mi and mj 
onne
ted by a spring of sti�ness kn

with:

cn = ξcc = 2ξ
√

meqkn (2.19)

with 0 < ξ ≤ 1 and meq is the equivalent mass of the 
onta
t,

meq =
mimj

mi +mj
(2.20)

The fra
tion ξ is related with the 
oe�
ient of restitution en = −δ̇aftern /δ̇beforen , whi
h is

a fra
tional value representing the ratio of speeds after and before an impa
t, through

the following expression (see [92℄):

ξ =
− ln en

√

π2 + ln2 en
(2.21)

Conta
t duration

The equation of motion des
ribing the 
ollision of parti
les with the LS+D model in

the normal dire
tion is a
hieved solving the di�erential equation resultant from the

appli
ation of equation 2.2 in a frame 
entred at the point of 
onta
t:

meq δ̈n = −(knδn + cnδ̇n) (2.22)

Eq. 2.22 
an be rewritten as [92℄:

δ̈n + 2Ψ(δ̇n) + Ω2
0 δn = 0 (2.23)

Where Ω0 =
√

kn/meq is the frequen
y of the undamped harmoni
 os
illator and

Ψ = ξΩ0 = cn/(2meq) is the part a

ounting for the energy dissipation.

The solution of the eq. 2.22 for the initial 
onditions δn = 0 and δ̇n = v0 and for the

sub-
riti
al damped 
ase

1

(Ω2
0 −Ψ2 > 0 or ξ < 1) reads:

δn(t) = (v0/Ω) e
−Ψt sin (Ωt) with Ω =

√

Ω2
0 −Ψ2

(2.24)

1

The 
ases of 
riti
al and super-
riti
al damping yield to other solutions whi
h 
an be found in [121℄
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And the relative normal velo
ity of the spheres:

δ̇n(t) = (v0/Ω) e
−Ψt (−Ψ sin (Ωt) + Ω cos (Ωt)) (2.25)

Now the 
onta
t duration 
an be determined from the 
ondition δn(tc) = 0, whi
h


ombined with eq. 2.24 gives:

tc = π/Ω (2.26)

Note that the 
onta
t duration does not depend on the initial approa
hing velo
ity δ̇n(t)

whi
h is obviously wrong as the formulation is not derived from the theory of elasti
ity

[55℄ (see se
tion 4.4 for more details).

The 
oe�
ient of restitution 
an be rewritten as:

en =
−δ̇n(tc)

δ̇n(0)
= e−πΨ/Ω

(2.27)

The inverse relationship allows the determination of the parameter cn of the model from

the restitution 
oe�
ient en, with the intermediate 
al
ulation of Ψ:

Ψ =
− ln en

√

π2 + ln2 en
Ω0 (2.28)

Finally, the maximum indentation 
an be obtained from the 
ondition δ̇n(t) = 0:

δmax = (v0/Ω0)e
−Ψ

Ω
arctan (Ω/Ψ)

(2.29)

Note on tensional for
es

It has been appointed by di�erent authors [92, 111, 125℄ that this simple model presents

unrealisti
 tension for
e when the parti
les are separating if the damping for
e is large

enough (Fig. 2.7). Normally in the implementation of the 
odes the normal for
e

is 
onstrained to be ex
lusively positive, i.e Fn ≥ 0 always, as no tra
tions o

ur in

fri
tional 
ohesion-less 
onta
ts. In this situation the de�nition of the 
onta
t duration

should be modi�ed as it has been derived by S
hwager and Pös
hel [111℄.
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Figure 2.7: The di�erent stages of a normal 
ollision of spheres with a vis
ous damped

model. Taken from: Fig. 1 in S
hwager and Pös
hel [111℄

The determination of the damping 
oe�
ients and the maximum indentation vary a
-


ordingly. It is not possible to derive an expli
it expression for the damping 
oe�
ient

cn in fun
tion of the restitution 
oe�
ient en. Fitting 
urves are proposed in [125℄.

Tangential fri
tional 
onta
t

In the original model from Cundall and Stra
k [24℄ the relationship between the elasti


shear for
e Ft and the relative tangential displa
ement ∆s is de�ned through a regular-

ized Coulomb model. The update of the tangential for
e at time step n+ 1 reads:

F n+1
t = min

(

µFn, F
n
t + kt∆sn+1

)

(2.30)

Several authors (in
luding the original paper) 
al
ulate the in
rement of tangential

displa
ement at a given time step n, ∆sn, as
∥

∥v
ij,n
t

∥

∥ ·∆t. In our in-house 
ode imple-

mentation it is 
al
ulated from the integration of the relative displa
ement and rotation

in the lo
al frame:

∆sn =
∥

∥u
ij · tij

∥

∥

(2.31a)

u
ij =

(

Θj × rji
c + uj

)

−
(

Θi × rij
c + ui

)

(2.31b)

In the original paper [24℄ the damping is in
luded only during the non-sliding phase

(Ft ≤ µFn) and it is applied afterwards as an extra for
e whi
h opposes the relative

velo
ity. The magnitude of the damping for
e is evaluated as ct ·
∥

∥v
ij
t

∥

∥

where ct the

tangential damping 
oe�
ient. In other authors' works and also in our 
ode implemen-

tation it is 
hosen to in
lude the dissipation in the 
he
k for sliding. In 
ase of sliding
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(Ft = µFn), extra de
ision on how to distribute the resultant tangential for
e in elasti


and dissipative part have to be taken. This will not be dis
ussed here. Eq. 2.30 modi�es

as:

F
trial

t = F
n
t + kt∆sn+1

t
ij + ctv

ij,n+1
t (2.32a)

F
n+1
t = min

(

µFn,
∥

∥F
trial

t

∥

∥

) F
trial

t

‖Ftrial

t ‖ (2.32b)

The previous time step for
es are transferred from its previous lo
al 
oordinate frame

to the new lo
al 
onta
t frame with a rotation of the for
e ve
tor (se
tion 2.7.1).

Sele
tion of the sti�ness and damping parameters

The sele
tion of the normal sti�ness kn is, in the LS+D model, a design parameter. The

general rule of thumb is that the value of kn should be large enough to avoid ex
essive

parti
le inter-penetration but at the same time should be small enough to permit rea-

sonable simulation time steps (se
tion 2.6.4) [118℄.

Cundall and Stra
k [24℄ investigated several values for the relation κ = kt/kn in the

range [2/3, 1], obtained from the following expression:

κ =
2(1− ν)

2− ν
(2.33)

The values for the damping in the original paper [24℄ are sele
ted as a proportion β of

the respe
tive sti�nesses:

cn = βkn (2.34a)

ct = βkt (2.34b)

Normally, the sele
tion of β will be based on the desired restitution 
oe�
ient through

eq. 2.19 and 2.21. Alternatively, S
häfer [113℄ suggests a value of kt equal to two-

sevenths of the normal sti�ness 
oe�
ient and a damping ct as half of the normal

damping 
oe�
ient. Thornton [124℄, in his turn, suggests a value of kn that yields the

same 
onta
t duration as the one predi
ted by the Hertzian theory (se
tion 2.5.2).
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2.5.2 Hertzian 
onta
t law (HM+D)

As introdu
ed in se
tion 2.5, there exist in literature several 
onta
t laws under the

framework the Hertzian 
onta
t theory [47℄. The model 
hosen for this dissertation is

an adaptation of the one referred as HM+D model in the work by Thornton [125℄ due

to its balan
e between simpli
ity and a

ura
y in both elasti
 [28, 124℄ and inelasti



ollisions [125℄. This is a model based on the original one by Tsuji [130℄ in whi
h the

tangential spring is provided by the no slip theory of Mindlin [81℄.

The magnitude of the normal for
e 
an be 
al
ulated as:

Fn =
2

3
knδn + cnδ̇n (2.35)

The tangential update has two bran
hes whether the normal for
e is in
reasing (load-

ing phase) or de
reasing (unloading 
ase). For the loading phase the tangential for
e

is in
reased as usual due to the tangential displa
ement (Eq. 2.36a). In the unloading

phase, however (Eq. 2.36b), the tangential for
e must be redu
ed (even with no tangen-

tial displa
ement) due to the redu
tion in the 
onta
t area. The interpretation of this

is that the previous tangential for
e 
an not longer be supported [125℄.

F n+1
te = F n

te + kn+1
t ∆sn+1

for ∆Fn ≥ 0 (2.36a)

F n+1
te = F n

te

(

kn+1
t

kn
t

+ kn+1
t

)

∆sn+1
for ∆Fn < 0 (2.36b)

Finally, the 
he
k for sliding is performed restri
ting the maximum tangential for
e to

the Coulomb's fri
tion limit:

F trial

t = F n+1
te + ctv

ij
t (2.37a)

F n+1
t = F trial

t if F n+1
t < µFn (2.37b)

F n+1
t = µFn if F n+1

t ≥ µFn (2.37
)

The sti�ness parameters were des
ribed by Tsuji [130℄ following from the Hertz theory

[47℄ and the works of Mindlin and Deresiewi
z [82℄:
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kn = 2E∗√Reqδn (2.38a)

kt = 8G∗√Reqδn (2.38b)

The same for the damping parameters:

cn = 2ξ
√

meqkn (2.39a)

ct = 2ξ
√

meqkt (2.39b)

The expressions presented here (eq. 2.38 and 2.39) are a generalization to the 
ase of

two spheres i and j 
olliding with di�erent values of R, E, ν and m. This generalization

in
ludes the 
ase of a sphere i 
olliding with a �xed wall j whi
h will be dis
ussed in

se
tion 2.5.3.

Req = RiRj/(Ri +Rj) (2.40a)

meq = mimj/(mi +mj) (2.40b)

E∗
eq =

(

(1− ν2
i )/Ei + (1− ν2

j )/Ej

)−1
(2.40
)

G∗
eq = ((2− νi)/Gi + (2− νj)/Gj)

−1
(2.40d)

Although the sele
tion of the sti�ness has here a physi
al meaning, it is 
ommon pra
ti
e

however, to diminish its value to in
rease the 
al
ulation speed in simulations where

the 
orre
t 
onta
t duration and rebound angles are not of 
apital importan
e. The

derivation of the for
e-displa
ement relationship and the 
ollision time by the Hertzian

theory are des
ribed in the Appendix A.

2.5.3 Conta
t with rigid boundaries

Rigid boundaries are 
ommonly introdu
ed in a DE simulation to model the intera
tion

of parti
les with me
hani
al 
omponents that 
an be either �xed or have an imposed

rigid body motion. Although they are normally dis
retized with a FE mesh for 
onta
t

dete
tion purposes (se
tion 3.1), they are not 
al
ulated by means of a FE pro
edure.

The rheology of a parti
le i 
onta
ting a FE j is presented in �gure 2.8.
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Figure 2.8: DE-FE standard 
onta
t rheology

Same as for DE/DE 
onta
t, Hertzian 
onta
t law is preferred to model the 
onta
ts

or impa
ts in a physi
al basis. Alternatively the linear 
onta
t law 
an still be used

as basi
 penalty method. The adaptation of the presented Hertzian 
onta
t law to the


ase of rigid boundaries is straightforward, it simply requires the parti
ularization of the

equivalent 
onta
t parameters summarized in 2.40 setting: Rj → ∞ and mj → ∞. The

normal sti�ness of the wall is left as an input parameter so that a 
ertain elasti
ity of

the wall 
an be modelled. Sin
e the tangential displa
ement of the wall will be in most


ases mu
h smaller than the parti
le's one, it is re
ommended to be set Gj → ∞ [130℄.

The equivalent values be
ome:

Req = Ri (2.41a)

meq = mi (2.41b)

E∗
eq =

(

(1− ν2
i )/Ei + (1− ν2

j )/Ej

)−1
(2.41
)

G∗
eq = Gi/(2− νi) (2.41d)

The sti�ness and damping parameters are modi�ed a

ordingly inserting these equiva-

lent values in eq. 2.38 and eq. 2.39. The fri
tion value to be employed in this 
ase is a

new parameter to be introdu
ed, whi
h is 
hara
teristi
 of the 
onta
t between the two

materials involved and might be di�erent from the parti
le-parti
le fri
tion.

Additionally, spe
ial 
onta
t laws 
an be applied whi
h model other e�e
ts su
h as a

spe
i�
 dynami
 response, wear, plasti
ity, thermal 
oupling, et
. [1, 66, 104℄.
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2.5.4 Rolling fri
tion

It should be noted that the use of spheri
al parti
les to represent real materials may

lead to ex
essive rotation. To avoid this e�e
t the rolling resistan
e approa
h has been

used. This approa
h 
onsists in imposing a virtual resistive torque whi
h is proportional

to the normal 
onta
t for
e and opposites the rolling dire
tion. The rolling resistan
e

torque T
r
is de�ned as;

T
r = −ηrRr|Fn| ω

rel

|ωrel| (2.42)

where ηr is the rolling resistan
e 
oe�
ient that depends on the material, Rr is the

smallest radius of the DEs in 
onta
t and ωrel
the relative angular velo
ity of both DEs.

Note that Rr = Ri for the 
ase where parti
le i is in 
onta
t with a wall (Rj → ∞).

An improvement to the 
lassi
al Rolling Resistan
e Model A presented by Wensri
h and

Katterfeld [137℄ has been developed by Irazábal [53℄ in order to avoid the instabilities

that appear when ωrel
is 
lose to 0.

2.6 Time integration

The equations of motion introdu
ed in se
tion 2.3 
an be numeri
ally integrated to ob-

tain a solution of the problem. Traditionally there are two strategies to a
hieve this: a)

An expli
it s
heme where the information at the 
urrent (or previous steps) su�
es to

predi
t the solution at the next step. b) An impli
it s
heme, whi
h requires the solution

of a non-linear system of equations to 
ompute the state at the new time step. The

disadvantage of the expli
it s
hemes is that they require the time step to be below a


ertain limit in order to be stable. Impli
it s
hemes instead, are un
onditionally stable

and thus, allow for larger time steps.

Some analysis on both impli
it and expli
it methods for dis
rete element simulations

showed that the se
ond one is generally preferable [97, 108℄. Impli
it algorithms turn to

be not e�
ient for DEM simulations be
ause of the nature of the dynami
s of parti
les

where relatively large motions are simulated 
ombined with very small 
hara
teristi


relative displa
ements between parti
les during 
onta
t events. In order to 
orre
tly


apture the dynami
s of the 
onta
t, the time resolution should be several times smaller
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than the duration of these 
onta
ts [108℄. Under this 
ondition, the expli
it integration

yields su�
ient a

ura
y and the time step is generally below its stability limits (see

se
tion 2.6.4). Following the same reasoning, low order expli
it s
hemes are usually

preferred rather than higher order ones. Another important out
ome of the use of an

expli
it integration is the easier parallelization of the 
ode and the avoidan
e of lin-

earization and employment of system solvers.

In other situations where the same 
onta
ts are kept for large simulation times, su
h

as 
ohesive models for DE (
hapter 5), the use impli
it s
hemes 
an be advantageous.

Otherwise, the sti�ness matri
es have to be rebuild, in general, at ea
h iteration and

time step due to the formation and destru
tion of 
onta
ts. Amongst the most popular

impli
it approa
hes in DEM is the Dis
ontinuous Deformation Analysis [58℄.

2.6.1 Expli
it integration s
hemes

In the present dissertation an expli
it integration is used. Next, four di�erent one-step

integration algorithms with similar 
omputational 
ost are des
ribed and 
ompared in

this se
tion. The derivation of these methods 
omes from the appli
ation of the Taylor

series approximation to the se
ond order di�erential equations of motion (2.2) that

des
ribes the problem.

f(t+∆t) = f(t) +
f ′(t)

1!
∆t +

f ′′(t)

2!
∆t2 +

f ′′′(t)

3!
∆t3 + ... (2.43)

Forward Euler

The forward di�eren
e approximation of the �rst derivative of a fun
tion reads as:

f ′(t) =
1

∆t
(f(t+∆t)− f(t)) (2.44)

The terms 
an be rearranged to obtain an integration formula:

f(t+∆t) = f(t) + ∆tf ′(t) (2.45)

whi
h is applied to the integrate the a

eleration and the velo
ity respe
tively:
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u̇
n+1 = u̇

n +∆t ün
(2.46)

u
n+1 = u

n +∆t u̇n
(2.47)

The trun
ation error of the Taylor expansion approximations are of O(N2). Hen
e, the

method is referred to as a �rst order approximation of the displa
ement and velo
ities.

Symple
ti
 Euler

The Symple
ti
 Euler is a modi�
ation of the previous method whi
h uses a ba
kward

di�eren
e approximation for the derivative of the position:

f ′(t) =
1

∆t
(f(t)− f(t−∆t)) (2.48)

The algorithm is as follows:

u̇
n+1 = u̇

n +∆t ün
(2.49)

u
n+1 = u

n +∆t u̇n+1
(2.50)

This way a higher a

ura
y and order of 
onvergen
e 
an be a
hieved as it is shown in

the numeri
al 
onvergen
e analysis performed in the following se
tion 2.6.3.

Taylor S
heme

The Taylor s
hemes are a family of integration methods whi
h make use of the Taylor

expansion (2.43) to approximate the next values of the variable of interest. If the series

are trun
ated at the �rst derivative for the velo
ity and at the se
ond derivative for the

position, the following integration rule is obtained:

u̇
n+1 = u̇

n +∆t ün
(2.51)

u
n+1 = u

n +∆t u̇n +
1

2
∆t2 ün

(2.52)

Whi
h is a �rst order integrator for the velo
ity and a se
ond order integrator for the

position.
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Velo
ity Verlet

This algorithm is sometimes simply 
alled Central Di�eren
es [10, 86℄ and some other

times it is interpreted as the velo
ity form of the Verlet algorithm [108, 119℄. It also


oin
ides with the spe
ial 
ase of the Newmark-beta method [93℄ with β = 0 and γ = 1/2.

The derivation presented here is the same as it is des
ribed by Belyts
hko in [10℄. The


entral di�eren
e formula is written as:

f ′(t) =
1

∆t
(f(t+ 1/2∆t)− f(t− 1/2∆t)) (2.53)

Applying it to the velo
ity at an intermediate position n+ 1/2:

u̇
n+1/2 =

1

∆t
(un+1 − u

n) (2.54)

and to the a

eleration at the time step n:

ü
n =

1

∆t
(u̇n+1/2 − u̇

n−1/2) (2.55)

Inserting equation 2.54 and its 
ounterpart for the previous time step (v
n−1/2

) into

equation 2.55, the 
entral di�eren
e formula for the se
ond derivative of the displa
ement

is obtained:

ü
n =

1

∆t2
(un+1 − 2un + u

n−1) (2.56)

The algorithm follows from the rearrangement of equations 2.54 and 2.55

u̇
n+1/2 = u̇

n−1/2 +∆t ün
(2.57)

u
n+1 = u

n +∆t u̇n+1/2
(2.58)

Sin
e it may be ne
essary to have both velo
ity and position evaluated at every time

step of the dis
retization, a split in the 
al
ulation of u̇
n+1/2


an be performed.

u̇
n = u̇

n−1/2 + 1/2∆t ün
(2.59)

u̇
n+1/2 = u̇

n + 1/2∆t ün
(2.60)
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The implementation of the method is summarized in the following table:

Table 2.1: Implementation of Velo
ity Verlet algorithm

Initialization of the s
heme. n = 0, ü
0 = F

0/m

while t < tf

Update step: n = n+ 1, t = t+∆t

First velo
ity update: u̇
n+1/2 = u̇

n + 1/2 ∆t ün

Position update: u
n+1 = u

n +∆t u̇n+1/2

Cal
ulate for
es F
n+1 = F

(

u
n+1, u̇n+1/2

)

Cal
ulate a

eleration: ü
n+1 = F

n+1/m

Se
ond velo
ity update: u̇
n+1 = u̇

n+1/2 + 1/2 ∆t ün+1

This is the sele
ted s
heme for the examples in this dissertation.

2.6.2 Integration of the rotation

The parti
ular 
ase of spheri
al parti
les simpli�es the equations for the rotation of

rigid bodies yielding to equation 2.3. Some authors [61, 95, 133℄ adapt a simple 
entral

di�eren
e s
heme to integrate the equations:

ω̇n
i =

T
n
i

Ii
, (2.61)

ω
n+1/2
i = ω

n−1/2
i + ω̇n

i ∆t (2.62)

The ve
tor of in
remental rotation ∆θn+1
is then 
al
ulated as:

∆θn+1
i = ω

n+1/2
i ∆t (2.63)

Knowledge of the in
remental rotation su�
es to update the tangential 
onta
t for
es.

If ne
essary, it is also possible to tra
k the rotational position of parti
les, as detailed

in se
tion 2.7.1.
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2.6.3 A

ura
y analysis

In this se
tion the error of the di�erent integration methods previously introdu
ed is

addressed by means of a

ura
y and 
onvergen
e analysis. Three 
ases representative of

translational motion o

urring in a DEM simulation are analysed here: free paraboli


motion, normal 
onta
t between two spheres using a linear 
onta
t law and normal


onta
t between two spheres using a Hertzian 
onta
t law. The des
ription of the test

examples is in �gure 2.9. A similar analysis has been performed by Samiei [108℄ for the


omparison of some expli
it s
hemes against impli
it integration.

The 
ase of rotational motion is analysed in se
tion 2.7.3 where a higher order s
heme

is implemented for the 
ase of a generi
 rigid body whi
h 
an be also applied to the

spheres. It is shown that the integration of the rotation equation requires higher order

s
hemes for similar levels of a

ura
y as the one-step methods.

(a) Set-up paraboli
 motion (b) Set-up normal 
onta
t

Figure 2.9: Examples for the a

ura
y and 
onvergen
e analysis on time integration

s
hemes
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Paraboli
 motion analysis

An initial upwards velo
ity of 1.0m/s is set to a parti
le situated at the origin of 
o-

ordinates whi
h moves freely only under the e�e
t of gravity whi
h is set to −10m/s2

during 0.2 se
onds.

A numeri
al integration of the problem is performed with the presented methods and


ompared against the analyti
al solution. The time step is 
hosen to be a tenth of the

total time so that the error of the methods 
an be easily observed.
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Figure 2.10: Verti
al displa
ement of a sphere under gravity using 10 time steps

As expe
ted, the velo
ity is perfe
tly integrated for any of the analysed s
hemes sin
e the

a

eleration is 
onstant over time (�gure 2.11). The position (�gure 2.10) is integrated

perfe
tly by the Taylor S
heme and Velo
ity Verlet whi
h are se
ond order s
hemes in

displa
ement.
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Figure 2.11: Velo
ity of a sphere under gravity using 10 time steps
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Figure 2.12: Convergen
e in velo
ity and displa
ement for di�erent integration s
hemes

Figure 2.12 shows that the Forward Euler and Symple
ti
 Euler s
hemes have a linear


onvergen
e when integrating the position. The 
onvergen
e is omitted for other s
hemes

and for the velo
ity sin
e the algorithmi
 error is null.
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Normal 
onta
t analysis with the LS+D model

Two spheres are set in spa
e with tangential 
onta
t (no indentation) and without the

e�e
t of the gravity. One of the spheres approa
hes the other one with an initial velo
ity

in the dire
tion of the ve
tor joining the spheres' 
entres as depi
ted in �gure 2.9(b).

The linear 
onta
t law introdu
ed in se
tion 2.5.1 is applied.

The expression for the maximum indentation (eq. 2.29) for the non-damped 
ase (Ψ =

0) turns into:

δmax = v0

√

meq

kn
(2.64)

And the 
onta
t duration (eq. 2.26):

tc = π

√

meq

kn
(2.65)

The simulation is 
arried out for the di�erent s
hemes with a time step 
orresponding

to a 
onta
t resolution

2

(CR) of 10, i.e. the time step 
orresponds to a tenth of the


onta
t duration. The parameters of the simulation are summarized in the following

Table 2.2:

Table 2.2: Parameters for the impa
t of two spheres with using LS+D

Conta
t law Linear Conta
t Law (se
tion 2.5.1)

Radius 0.01 m

Density 100 kg/m3

kn 520.83 kN/m

Restitution 
oe�. 1.0

V0 0.5 m/s

Conta
t time 4.17 · 10−3 s

CR 10

2

The 
on
ept of 
onta
t resolution de�ned as CR = tc/∆t is dis
ussed in se
tion 2.6.4.
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Figure 2.13: Indentation during the 
ollision of two spheres using LS+D with CR = 10
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Figure 2.14: Velo
ity during the 
ollision of two spheres using LS+D with CR = 10

Both Symple
ti
 Euler and Velo
ity Verlet a

urately approximate the indentation (Fig.

2.13). Regarding the velo
ity, the Verlet s
heme is the one with superior a

ura
y over

the other s
hemes (Fig. 2.14).
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Figure 2.15: Convergen
e in velo
ity and displa
ement for the FE and SE s
hemes

The numeri
al results for the maximum indentation as well as the exit velo
ity of the


onta
t have been taken as the measures to evaluate the error for di�erent time steps.

Both F.E. and Taylor s
hemes showed linear 
onvergen
e in displa
ement and velo
ity

(Fig. 2.15). On the other hand, S.E. and V.V. showed quadrati
 
onvergen
e for the

displa
ement and velo
ities.

Normal 
onta
t analysis with the HM+D model

Finally, the same test is 
arried out using a Hertzian 
onta
t law (se
tion 2.5.2). The

derivation of the 
onta
t time duration and other properties of the Hertzian 
onta
t

are detailed in Appendix A. The simulation parameters are summarized in Table 2.3.

The di�erent s
hemes are tested with a CR = 10 and the results for the indentation

evolution and its time derivative are plotted in Fig. 2.16 and Fig. 2.17 respe
tively.
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Table 2.3: Parameters for the impa
t of two spheres using HM+D

Conta
t law Hertzian Conta
t Law (se
tion 2.5.2)

Radius 0.01 m

Density 100 kg/m3

Young's modulus 1 · 105 kN/m2

Poisson's ratio 0.2

Restitution 
oe�. 1.0

V0 0.5 m/s

Conta
t time 1.99 · 10−3 s

CR 10
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Figure 2.16: Indentation during the 
ollision of two spheres using HM+D with CR = 10

The same 
on
lusions of the linear 
ase 
an be drawn for the Hertzian 
onta
t: the

Symple
ti
 Euler and Velo
ity Verlet a

urately approximate the indentation (Fig. 2.16)

while the other s
hemes present some error. Regarding the velo
ity, the better s
heme

is 
learly the Verlet s
heme (Fig. 2.17).
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Figure 2.17: Velo
ity during the 
ollision of two spheres using LS+D with CR = 10

In terms of 
onvergen
e, the velo
ity presented even a higher order than quadrati
 for

the Verlet s
heme. It shall be noti
ed however, that the error of this variable for the

sele
ted time steps is too small to draw 
on
lusions on the s
heme 
onvergen
e.
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Figure 2.18: Convergen
e in velo
ity and displa
ement for di�erent integration s
hemes
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2.6.4 Stability analysis

There are many fa
tors that 
an 
ause instabilities in a Dis
rete Element simulation.

The �rst basi
 requisite for the time step, in a DEM simulation, is to be stable in

terms of the integration s
heme. Another signi�
ant sour
e of instabilities is the la
k of

a

ura
y in the determination of the formation of 
onta
ts. In this sense, quantities su
h

as the velo
ity of the parti
les and the sear
h frequen
y play a great role in the overall

stability and are not su�
iently studied in the literature. While most of the authors

merely perform a s
heme stability analysis [98℄ for the determination of the time step,

a large safety fa
tor is applied whi
h redu
es the estimated value. This reinfor
es the

idea of using a time step based on the 
on
ept of 
onta
t resolution [59, 107℄ de�ned as

the number of steps used to resolve a 
onta
t event, CR = tc/∆t.

Stability of the integration s
heme

Expli
it integration s
hemes present a limitation in the time step in order to be numer-

i
ally stable ∆t ≤ ∆tcr. Belyts
hko [10℄ shows that the 
riti
al time step ∆tcr for a


entral di�eren
e method is determined by the highest natural frequen
y of the system

ωmax as:

∆tcr =
2

ωmax
(2.66)

Exa
t 
al
ulation of the highest frequen
y ωmax requires the solution of the eigenvalue

problem de�ned for the whole system of 
onne
ted rigid parti
les. In an approximate

solution pro
edure, an eigenvalue problem 
an be de�ned separately for every rigid

parti
le using the linearized equations of motion. The maximum frequen
y is estimated

as the largest of the natural frequen
ies of the mass-spring systems de�ned for all the

parti
les with one translational and one rotational degree of freedom:

ωmax = max
i

ωi (2.67)

And the natural frequen
y for ea
h mass-spring system (
onta
t) is de�ned as:

ωi =

√

k

mi
(2.68)

being k the spring sti�ness and mi the mass of parti
le i. Now, for the 
ase with no
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damping, it is possible to rewrite the 
riti
al time step as:

∆tcr = min
i

2

√

mi

k
(2.69)

The e�e
tive time step is 
onsidered as a fra
tion of the 
riti
al time step:

∆t = β∆tcr (2.70)

The fra
tion β ∈ [0, 1] has been studied by di�erent authors. O'Sullivan and Bray in

[98℄ re
ommend values 
lose to β = 0.17 for 3D simulation, and β = 0.3 for the 2D 
ase.

If damping exists, the 
riti
al time in
rement is modi�ed with the fra
tion of the 
riti
al

damping ξ 
orresponding to the highest frequen
y ωmax in the following way [10℄:

∆tcr =
2

ωmax

(

√

1 + ξ2 − ξ
)

(2.71)

Further details are given in se
tion 4.73 where the 
riti
al time step for a expli
it �nite

element pro
edure is dis
ussed.

Example of the s
heme stability

An example is presented here to show the performan
e of the di�erent s
hemes for time

steps near the 
riti
al one and smaller. A sphere of radius R = 4mm and density

2.000 kg/m os
illates between two parallel plates whi
h are separated 7mm using a lin-

ear 
onta
t law with sti�ness kn = 1N/m. The sphere presents an initial indentation

with the top plate of 1mm (�g. 2.19(a)). The example tries to simulate the instability

e�e
ts that 
an o

ur lo
ally in a system with dense parti
le pa
kings.

The linear mass-spring system has a theoreti
al frequen
y

3

of ω =
√

2kn/m = 61.08rad/s

whi
h yields to a 
riti
al time step ∆tcr = 0.03275 s. The results for the four s
hemes

are presented (�g. 2.19) using time steps: ∆t = 0.03275 s, ∆t = 0.00300 s and

∆t = 0.00010 s.

3

The 2 multiplying the sti�ness 
omes from the fa
t that this is not a single mass-spring system,

instead two plates are 
ontributing to the sti�ness of the system.
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The results show how the Velo
ity Verlet is the only s
heme whi
h has an a

eptable

performan
e in the limit of the 
riti
al time step (�g. 2.19(b)) as it is a se
ond order

s
heme. It was found that for a slightly larger time step the Velo
ity Verlet s
heme

be
omes also unstable as predi
ted by the 
riterion in eq. 2.69. Symple
ti
 Euler,

whi
h showed properties similar to a se
ond order s
heme in terms of a

ura
y, does

not unstabilize but presents a wrong predi
tion of the amplitude. As it 
an be seen in

�gure 2.19(
) the �rst order s
hemes are still unstable even for a time step whi
h is ten

times smaller than the 
riti
al one, being Forward Euler the most unstable one. Finally,

in �gure 2.19(d) it is shown that all methods 
onverge to the analyti
al solution as the

time step diminishes.

(a) Setup of the example
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(b) Position evolution for ∆t = 0.03275
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(
) Position evolution for ∆t = 0.00300
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(d) Position evolution for ∆t = 0.00010

Figure 2.19: Setup and results for the position of the sphere between the plates
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Stability due to la
k of a

ura
y

The la
k of a

ura
y 
an produ
e instabilities in a DEM simulation. The easiest way to

explain it is to imagine a parti
le travelling with a very large velo
ity towards another

parti
le or a wall; while the 
riti
al time step was shown to be independent of the ve-

lo
ity (eq. 2.71), a large velo
ity will imply ina

ura
y in the dete
tion of the 
onta
t

and this translates into an indentation that 
an be unboundedly large and thus yielding

to an unrealisti
 in
rease in the energy. This 
an also be interpreted as an insu�
ient

resolution of the 
onta
t.

An example of this e�e
t is found in the work by Ketterhagen et al. [59℄ where an analy-

sis of how the time step a�e
ts the mean stress tensor measurements in two-dimensional

granular shear �ow simulations is performed. For a time step small enough the simu-

lation results for the stress tensor (or any other variable) should be independent of the

time step size. The studies performed using a linear 
onta
t model and several sti�ness

values showed that for a CR = 15 the error in the stress measurement was below 2.5%

while higher time steps yielded a sudden in
rease in the error up to values above 10%.

These ina

ura
ies may introdu
e instabilities as it was shown by their results whi
h are

referen
ed here in Fig. 2.20.

Figure 2.20: Stress measurement error in shear �ow simulations. Taken from: Fig. 4 in

Ketterhagen et al. [59℄

A 
ommonly a

epted approa
h as an alternative to the 
riti
al time step 
riterion

(se
tion 2.6.4) is to sele
t the time step of the simulation in fun
tion of the 
hara
ter-

isti
 duration of the 
onta
ts, i.e, by means of the 
onta
t resolution. No agreement is
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found when addressing a 
orre
t value for the CR, several authors re
ommend values

around CR = 50 whi
h is quite 
onservative (See [17, 118, 122, 133℄), Keterhagen et al.

re
ommends a 
onta
t resolution of CR = 33 while others like Dury [31℄ use larger time

steps: CR = 15. O'Sullivan [98℄ determines values of CR in the range [6 − 10] using a


entral di�eren
es s
heme with regular mono-disperse (same radius) meshes.

Summarizing, there is not a unique solution for the problem of sele
ting a suitable time

step. It depends on many fa
tors su
h as the mesh, the integration s
heme, the type of

simulation, the material parameters, the 
onta
t law, et
. Our suggestion is to estimate

a 
hara
teristi
 
onta
t time of the problem and then sele
t a time step based on the

CR 
riterion in the range [10− 50] depending on the 
onditions of the problem and the

a

ura
y desired. This will be in general mu
h lower than the 
riti
al time step.

2.6.5 Computational 
ost

From the a

ura
y and stability analysis it is 
lear that Velo
ity Verlet and Symple
ti


Euler are mu
h superior than the Forward Euler and Taylor S
heme, being Velo
ity

Verlet the best one among these four one-step s
hemes. The �nal aspe
t to take into


onsideration is the 
omputational 
ost of the method. Simulations in real appli
ations

involve millions of parti
les and 
an also 
omprehend millions of time evaluations.

The example des
ribed in se
tion 6.2.2 is used here to 
al
ulate 1.000 time steps. It

in
ludes approximately 30.000 spheres 
onta
ting among them and also with around

2.500 rigid �nite elements. The test has been run in a personal 
omputer with an Intel

Core i7 pro
essor of 4 Gb RAM and 2.93 GHz.

Table 2.4: Cal
ulation times in serial for the di�erent integration s
hemes.

S
heme F. Euler Taylor S. Euler V. Verlet

Time (s) 169.61 170.04 169.64 174.28

The results showed similar 
omputational times for the four s
hemes. Velo
ity Verlet

performed 2.7% slowlier whi
h is insigni�
ant 
onsidering the advantages found in terms

of a

ura
y and stability in the integration of velo
ities. Obviously, it will vary in every


omputer but in general lines we determine that it is worth to employ a Velo
ity Verlet

s
heme.
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2.7 Parti
le shape

In granular matter, the e�e
ts of the parti
le geometry are 
ru
ial in the behaviour of

the parti
les as a bulk or as individuals [73℄. Often, the phenomenologi
al approa
h is


onsidered and the granular media are modelled with spheres as it is the 
heapest and

most e�
ient option for simulating a large amount of parti
les [95℄. Alternatively, if we

want a method whi
h is purely based on 
onta
t and other intera
tion for
es, the real

geometry of the parti
les have to be well represented.

Among the most 
ommon methods there is the use superquadri
s, whi
h permits a

wide range of symmetri
 
onvex shapes [136℄, the Granular Element Method [3℄, whi
h

uses NURBS to represent the parti
les and, �nally, the use of 
lusters or agglomeration

of spheres [39℄. The last one is 
hosen in this work sin
e it provides great balan
e

between shape representation a

ura
y

4

and e�
ien
y in terms of 
omputational 
ost.

Furthermore, it is the most versatile method in terms of parti
le shape and 
an naturally

in
lude angularities. The 
onta
t for
es and torques are evaluated as usual on every

sphere through eq. 2.4 and eq. 2.5. The 
ontribution from every sphere is then gathered

and translated to the 
entre of gravity of the rigid body altogether with the additional

torque yielding from the appli
ation of the this for
e from the 
entre of every parti
le i

to the 
entre of the 
luster xcm through the distan
e ve
tor r
p
i = Ci − xcm.

F =

np
∑

i=1

Fi (2.72a)

T =

np
∑

i=1

Ti +

np
∑

i=1

r
p
i × Fi (2.72b)

4

The use of sphere 
luster 
an introdu
e arti�
ial fri
tion due to the irregularities in the surfa
e

meshed by spheres. This problem is dis
ussed in [48℄.
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Figure 2.21: Dis
retization of a rigid body using a 
luster approa
h with spheres on the

surfa
e or overlapping in the interior

On
e the total for
e F and torque T of the rigid body is obtained, the 
lassi
al Newton's

se
ond law for the translation and the Euler rotation equations have to be solved in

order to obtain the full motion of the rigid body (se
tion 2.7.2). These equations 
an be

integrated in an expli
it way, preferably with a se
ond or higher order s
heme (se
tion

2.7.3).

2.7.1 Representation of the rotation

There are three ways whi
h are very popular to represent rotations in the DEM: the use

of Euler Angles, the use of rotation matri
es and the use of quaternions. A review of

the advantages and drawba
ks of the methods 
an be found in [147℄.

The use of quaternions represents a 
lear advantage. It avoids the singularity problems

that Euler angles present, it is more 
ompa
t and it has less memory requirements than

storing rotation matri
es. Furthermore, the rotation operations are done in a more e�-


ient way than using rotation matri
es.

A rotation matrix R is a 3× 3 orthogonal matrix whi
h transforms a ve
tor or a tensor

from one 
oordinate system to another one as follows:

v
′ = Rv (2.73a)

A
′ = RART

(2.73b)
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Given a rotation of θ degrees over a unitary ve
tor u, the rotation matrix is 
onstru
ted

as follows:

R =











cos θ + u2
x (1− cos θ) uxuy (1− cos θ)− uz sin θ uxuz (1− cos θ) + uy sin θ

uyux (1− cos θ) + uz sin θ cos θ + u2
y (1− cos θ) uyuz (1− cos θ)− ux sin θ

uzux (1− cos θ)− uy sin θ uzuy (1− cos θ) + ux sin θ cos θ + u2
z (1− cos θ)











(2.74)

A quaternion 
an summarize the same information just using 4 s
alars. It is de�ned in

the 
omplex number system as:

q = q0 + q1i+ q2j + q3k (2.75)

or in a 
ompa
t form:

q = [q0, q] (2.76)

De�ning its 
onjugate as q∗ = [q0,−q], the norm of a quaternion 
an be expressed:

‖q‖ =
√
qq∗ (2.77)

and its inverse:

q−1 =
q∗

‖q‖ (2.78)

Now, given a rotation of θ degrees over a unitary ve
tor u, the resulting unit quaternion

reads:

q = cos(θ/2) + sin(θ/2)u (2.79)

And the 
onversion from quaternions to a rotation matrix is the following:

R =











1− 2(q22 + q23) 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q1q2 + 2q0q3 1− 2(q21 + q23) 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 1− 2(q21 + q22)











(2.80)
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By using unit quaternions the intermediate transformation to a rotation matrix 
an be

skipped and the rotation 
an be dire
tly applied to ve
tors and tensors. The spe
i�-


ation of unit quaternions is important in order to preserve lengths during rotational

transformations. The rotations are applied in the following way:

v
′ = qvq−1

(2.81a)

A
′ =
(

q
(

qAq−1
)T

q−1
)T

(2.81b)

To do so, the multipli
ation operation needs to be employed. Given two quaternions p

and q the multipli
ation yields a new quaternion t:

t = pq = [p0q0 − pq, p0q + q0p+ p× q] (2.82)

The ve
tor involved in a quaternion multipli
ation (eq. 2.81a) is treated as a quaternion

v = [0, v] with a null s
alar part. The tensor multipli
ation (eq. 2.81b) 
an be simply

done treating the tensor as an assembly of ve
tors that are being multiplied subsequently.

Note that the multipli
ation of quaternions is not 
ommutative sin
e it involves a 
ross

produ
t. A extended review on quaternion algebra 
an be found in [2℄.

2.7.2 Rigid body dynami
s

In a rigid body the distan
e between two material points is 
onstant over time. Any

spatial movement undergone by a rigid body 
an be des
ribed with the displa
ement of

the 
entre of mass plus a rotation over some axis passing through the 
entre of gravity.

Figure 2.22: A generi
 rigid body
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For sake of 
onvenien
e the spatial des
ription of the body will be used identifying the

position of every material point P in time t with its spatial position x(t) referred to

global inertial referen
e system X,Y,Z. In its turn, the supers
ript

′
as in x′(t) denotes

a quantity expressed with respe
t to the body �xed frame x′,y′, z′
. The temporal de-

penden
e will be dropped in the following developments for 
larity.

The de�nition of the 
entre of mass of a body en
losed by the domain Ω supposing


onstant ρ density is:

xcm :=
1

m

∫

Ω

ρx dΩ (2.83)

De�ning r := x− xcm. The velo
ity and a

eleration 
an be obtained:

v(x) = ẋcm + ω × r (2.84a)

a(x) = ẍcm + ω̇ × r + ω × (ω × r) (2.84b)

The linear and angular momentum are de�ned as:

L(t) : =

∫

Ω

ρv dΩ (2.85a)

H(t) : =

∫

Ω

r × ρv dΩ (2.85b)

and the balan
e expressions for linear and angular momentum read:

L̇(t) = F(t) (2.86a)

Ḣ(t) = T(t) (2.86b)

Now, the expression for the translational motion is obtained 
ombining equation 2.85a

and 2.84b onto the equation of balan
e of linear momentum 2.86a yielding the 
lassi
al

Newton's se
ond law of motion:

F = L̇ = m ẍcm, (2.87)
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Likewise, the expression for the rotational motion is a
hieved plugging equation 2.85a

into equation 2.86a and evaluating the temporal derivative. The expression of the Euler

equations is found with the use of eq. 2.84b and eq. 2.84a onto the balan
e of linear

momentum (eq. 2.86a).

T = Ḣ = I · ω̇ + ω × I ·ω (2.88)

Where I is the inertia tensor whi
h is de�ned as:

I =

∫

Ω

ρ

(

(r · r)1− r ⊗ r

)

dΩ (2.89)

Note that the inertia tensor depends on the referen
e axis. Only in a body �xed

frame the tensor has 
onstant 
omponents. If we set this frame 2.88 in the so-
alled

prin
ipal axis of inertia the tensor diagonalizes and the Euler equations 
an be expressed


omponent-wise as:

T ′
x = I ′x ω̇

′
x + (I ′z − I ′y)ω

′
zω

′
y

T ′
y = I ′y ω̇

′
y + (I ′x − I ′z)ω

′
xω

′
z

T ′
z = I ′z ω̇

′
z + (I ′y − I ′x)ω

′
yω

′
x

(2.90)

2.7.3 Time integration of rotational motion in rigid bodies

The integration of the rotation needs di�erent s
hemes than the ones presented for the

translational motion in se
tion 2.6.1 due to the higher 
omplexity of the equations.

The strategy des
ribed here is an adaptation of the s
heme presented by Munjiza et

al. [88℄ and Wellman [136℄. The modi�
ation 
onsists in the use of quaternions instead

of rotational matri
es in the integration s
heme whi
h makes the 
al
ulations more

e�
ient in terms of 
omputational 
ost and memory storage. The point of departure is

the balan
e of angular momentum in the following form:

T =
dH

dt
(2.91)

Munjiza et al. [88℄ introdu
ed the idea that the 
hange in angular momentum 
an be

approximated by in
rements due to the 
hange in the external torques at every time

step. A
tually, this assumption adapts perfe
tly to the temporal dis
retization used in

DEM where the for
es and torques are evaluated in dis
rete time steps.
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H
n+1 = H

n +∆tTn
(2.92)

This yields a 
onstant angular momentum throughout a time step. The angular velo
-

ities 
an be approximated from the de�nition of the angular momentum expressed in

the following way:

H = I ·ω (2.93)

The key here is not to derive a 
onstant angular velo
ity from the relation ω = I
−1 ·H

but approximate it using a higher order s
heme su
h as a fourth-order Runge-Kutta.

Normally, the torques T and angular momentum H are expressed in global 
oordinates

while the inertia tensor I ′
is naturally stored in the lo
al body-�xed frame where it is

diagonal with 
onstant 
oe�
ients. Applying the quaternion tensor rotation des
ribed

in equation 2.81b, the lo
al inertia tensor I ′

an be expressed in global 
oordinates, I.

Now, the angular velo
ity 
an be obtained from equation 2.93 as:

ω =

(

(

q
(

q I′ q−1
)T

q−1
)T
)−1

·H (2.94)

where q is the quaternion de�ning the transformation between lo
al and global 
oordi-

nates

5

. Instead of 
al
ulating it dire
tly, a four order Runge-Kutta s
heme is applied

for the determination of an average angular velo
ity ω̄ during the time step:

ω1 := ωn
(2.95a)

ωk :=

(

(

qk
(

qk I
′ q−1

k

)T
q−1
k

)T
)−1

·Hn+1 k ∈ [2, 4] (2.95b)

ω̄ := 1/6 (ω1 + 2ω2 + 2ω3 + ω4) (2.95
)

where the values of the transformation quaternions qk are:

5

It shall be noted that in the 
ase of spheri
al parti
le we 
an skip this transformation sin
e the

inertia is diagonal and 
onstant in every referen
e system.
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q2 := q(ω1,∆t/2)qn (2.96a)

q3 := q(ω2,∆t/2)qn (2.96b)

q4 := q(ω3,∆t)qn (2.96
)

On
e the average angular velo
ity during the time step ω̄ is obtained, the �nal update

predi
ts the velo
ity at the new step as:

qn+1 = q(ω̄,∆t)qn (2.97a)

ωn+1 =

(

(

qn+1
(

qn+1
I
′ (qn+1)

−1
)T

(qn+1)
−1
)T
)−1

·Hn+1
(2.97b)

The quaternions expressed in the form q(a, b) (eq. 2.96a, 2.96b, 2.96
 and 2.97a )

represent in
remental rotations that are derived from the appli
ation of 
onstant angular

velo
ities a during a fra
tion of time b. First, the 
orresponding rotation angles are


al
ulated:

∆θ(a, b) = b · a (2.98)

The unitary ve
tor de�ning the rotation is uθ = ∆θ (‖∆θ‖)−1
and its magnitude ‖∆θ‖.

With these two quantities the mapping ∆θ(a, b) → q(a, b) 
an be a
hieved applying

equation 2.79.
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Dire
t expli
it integration

Some 
odes perform a dire
t forward expli
it integration of the equations of motion

whi
h is presented here. Eq. 2.99 is expressed in a diagonalized lo
al frame where the

′

supers
ript has been dropped for 
larity:

ωn+1
x = ωn

x +
∆t

Ix

(

T n
x − (Iz − Iy)ω

n
z ω

n
y

)

(2.99a)

ωn+1
y = ωn

y +
∆t

Iy

(

T n
y − (Ix − Iz)ω

n
x ω

n
z

)

(2.99b)

ωn+1
z = ωn

z +
∆t

Iz

(

T n
z − (Iy − Ix)ω

n
y ω

n
x

)

(2.99
)

Rotation integration ben
hmark

In the works of Munjiza et al. [88℄ and Lillie [70℄ an example whi
h 
an be analyti
ally

solved is run with the presented s
heme using rotation matri
es instead of quaternions.

They showed that the s
heme rapidly yields a

urate results. Here the same example is

reprodu
ed to 
he
k the good implementation of the RK − 4 s
heme using quaternions

and also to show its superiority against a dire
t expli
it integration.

A 
ylinder of 1.5m height and 0.5m radius with a density of 1 kg/m3 is set to freely

rotate in the spa
e with an initial angular velo
ity of ω0 = [0, 1, 100] rad/s during 0.5

se
onds. Sin
e the initial axis of rotation does not 
oin
ide with any of the prin
ipal

dire
tions e′
1, e

′
2, e

′
3, the resulting rotational motion presents the so 
alled torque free

pre
ession whi
h is 
hara
terized by a varying rotational velo
ity ω and inertia tensor

I (in global 
oordinates).

As �gures 2.24 and 2.25 show, the RK − 4 s
heme is mu
h more a

urate than the

dire
t integration. Even using a time step ten times smaller for the dire
t integration

than for the RK − 4, the last s
heme performs better. Both methods proved to have


onvergen
e to the analyti
al solution when smaller time steps were used.
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Figure 2.23: Cylinder set-up
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Figure 2.24: Integration results for lo
al ωx
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We introdu
ed the implementation of the RK − 4 with quaternions in order to have

a s
heme that is mu
h more e�
ient in 
omputational 
ost 
ompared to the original

one using rotation matri
es and it handles the storage of the rotations with less than

half of the memory. Therefore, and taking into a

ount the poor a

ura
y of the dire
t

approximation, we highly re
ommend the use of the RK − 4 method for the integration

of the rotations both for spheri
al and non-spheri
al parti
les.

2.8 Mesh generation

Several industrial pro
esses in whi
h the parti
le �ow is simulated do not require an

initial mesh but an inlet and possibly an outlet. However, in a general 
ase, an initial


on�guration of parti
les is required and a thus a generation tool has to be employed.

Normally, a heterogeneous mesh is desired with a spe
i�
 granulometry or size distribu-

tion. To that end several te
hniques exist whi
h are based on di�erent prin
iples.

A �rst family of methods, known as Lily-pound methods [34, 41, 71℄ insert parti
les

in random lo
ations 
he
king if interse
tions o

ur, if so, a new lo
ation is determined.

On the other hand, the advan
ing front te
hniques [5, 7, 36℄ 
ollo
ate the parti
les layer

by layer starting from the boundaries or the interior of the domain presenting a better


ontrol on the desired size distribution. Di�erent modi�
ations exist whi
h attempt to

improve the pa
king of these te
hniques like in [72℄.

In the framework of the thesis the GiD sphere mesher developed by Labra [63℄ has been

used for the generation of the sphere meshes. Its prin
iple is based on a �rst 
ollo
ation

of parti
les with a later rearrangement te
hnique [8, 74℄ whi
h 
orre
ts the in
lusions

generated being able to a
hieve dense pa
kings. The redu
tion of the porosity is solved

with the minimization of a distan
e fun
tion with every parti
le and its neighbours.

Some other meshing te
hniques rely on a DEM pre-simulation to �ll the domain with

an inlet or pushing boundaries in a expanded domain where the parti
les are initially

set. These are the te
hniques used for the generation of meshes based on 
lusters of

spheres in the framework of this thesis.
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2.9 Basi
 DEM �ow
hart

Figure 2.26: Basi
 DEM �ow
hart





Chapter 3
The Double Hierar
hy (H2

) Method

for DE-FE 
onta
t dete
tion

This 
hapter presents a detailed des
ription of the 
onta
t dete
tion between dis
rete

elements and �nite elements. First, the state of the art of the existing methods for

modelling the 
onta
t with boundaries is reviewed as well as the spe
i�
 DE-FE 
ol-

lision dete
tion methods. Later, the Double Hierar
hy Method [110℄, a novel method

developed for the intera
tion with rigid stru
tures, is thoroughly des
ribed in
luding

implementation details together with validation examples.

As it will be shown, the literature la
ks of a �exible method that 
omputes e�
iently

the 
onta
t between parti
les and FE, allowing for multi-
onta
t problems and pro-

viding 
ontinuity of for
es in non-smooth 
onta
t regions. The obje
tive of this new

method is to provide a robust, versatile and e�
ient pro
edure whi
h 
an ta
kle the

above-mentioned problems and be implemented in any DEM 
ode allowing parallel


omputation.

The method presented here adapts perfe
tly to the 
ase of spheri
al parti
les (in
luding


lusters of spheres) 
onta
ting triangles or quadrilaterals belonging to the rigid bound-

aries in
luded in a DEM simulation. The dis
ussion on how to upgrade this method to

the 
ase of deformable stru
tures will be presented in 
hapter 4.



62 The Double Hierar
hy (H2
) Method for DE-FE 
onta
t dete
tion

3.1 State of the art

Several solutions have been reported for the in
lusion of boundaries to the dis
rete

element method. Among the simplest ones is the glued-sphere approa
h [60℄, whi
h

approximates any 
omplex geometry (i.e. a rigid body or boundary surfa
e) by a 
ol-

le
tion of spheri
al parti
les so it retains the simpli
ity of parti
le-to-parti
le 
onta
t

intera
tion. This approa
h, however, is geometri
ally ina

urate and 
omputationally

intensive due to the introdu
tion of an ex
essive number of parti
les. A se
ond simple

approa
h (used in some numeri
al 
odes, e.g., ABAQUS) is to de�ne the boundaries as

analyti
al surfa
es. This approa
h is 
omputationally inexpensive, but it 
an only be

applied in 
ertain spe
i�
 s
enarios, where the use of in�nite surfa
es does not disturb

the 
al
ulation. A more 
omplex approa
h whi
h 
ombines a

ura
y and versatility is

to resolve the 
onta
t of parti
les (spheres typi
ally) with a �nite element boundary

mesh. These methods take into a

ount the possibility of 
onta
t with the primitives of

the FE mesh surfa
e, i.e., fa
et, edge or vertex 
onta
t. The term FE will be used in

this dissertation when referring to the geometry elements (triangles, quadrilaterals, et
.)

whi
h are used to dis
retize the boundaries even if they are not used for the 
al
ulation

of a deformable solid.

Horner et al. [49℄ and Kremmer and Favier [61℄ developed the �rst hierar
hi
al 
onta
t

resolution algorithms for 
onta
t problems between spheri
al parti
les and triangular el-

ements, while Zang et al. [145℄ proposed similar approa
hes a

ounting for quadrilateral

fa
ets. Dang and Meguid [26℄ upgraded the method introdu
ing a numeri
al 
orre
tion

to improve smoothness and stability. Su et al. [115℄ developed a 
omplex algorithm

involving polygonal fa
ets under the name of RIGID whi
h in
ludes an elimination pro-


edure to resolve the 
onta
t in di�erent non-smooth 
onta
t situations. This approa
h,

however, does not 
onsider 
onta
t with entities of di�erent surfa
es at the same time

(multiple 
onta
ts) leading to an ina

urate 
onta
t intera
tion. The upgraded RIGID-

II method presented later by Su et al. [116℄ and also the method proposed by Hu et al.

[51℄ a

ount for the multiple 
onta
t situations, but they have a 
omplex elimination

pro
edure with many di�erent 
onta
t s
enarios to distinguish, whi
h is di�
ult to 
ode

in pra
ti
e. Chen et al. [20℄ presented a simple and a

urate algorithm whi
h 
ov-

ers many situations. Their elimination pro
edure, however, requires a spe
ial database

whi
h strongly limits the parallel 
omputation.
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In the framework of this thesis, the Double Hierar
hy Method (H2
) [110℄, has been de-

veloped. It 
onsists in a simple 
onta
t algorithm based on the FE boundary approa
h.

It is spe
ially designed to resolve e�
iently the interse
tion of spheres with triangles

and planar quadrilaterals but it 
an also work �ne with any other higher order planar


onvex polyhedra. A two layer hierar
hy is applied upgrading the 
lassi
al hierar
hy

method presented by Horner [49℄; namely hierar
hy on 
onta
t type followed by hier-

ar
hy on distan
e. The �rst one, 
lassi�es the type of 
onta
t (fa
et, edge or vertex)

for every 
onta
ting neighbour in a hierar
hi
al way, while the distan
e-based hierar
hy

determines whi
h of the 
onta
ts found are valid or relevant and whi
h ones have to be

removed.

Industrial appli
ations may involve a large number of parti
les and also a �ne de�nition

of the boundaries whi
h, using boundary FE, would turn into large number of 
onditions

to 
he
k. The sele
ted algorithm works e�
iently in parallel 
omputations as will be

shown in 
hapter 6. This is a 
lear advantage over the above-mentioned publi
ations

whi
h algorithms are mostly serial. Ex
eptions are Nakashima [91℄ whose method is

presumably parallelizable and Zang [145℄ and Su [116℄ whi
h remark the importan
e of

the future parallelization of their algorithms.

Summarizing, the 
onta
t sear
h framework presented is designed to satisfy the follow-

ing requirements:

• In
lude poly-disperse elements for both: FEs and DEs.

• Allow di�erent FE geometries and primitives (triangle, quadrilateral, polygon).

• Ensure 
onta
t 
ontinuity in non-smooth regions (edges and verti
es).

• Resolve multiple 
onta
ts and 
onta
t with di�erent entities simultaneously.

• Need low memory storage.

• Be simple, fast and a

urate.

• Be fully parallelizable.
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Table 3.1: Strengths and drawba
ks of the 
onta
t dete
tion algorithms evaluated

Glued Anal.

Hierar
hy

RIGID RIGID-II Hu Chen H2

[60℄

[26, 49,

61, 145℄

[115℄ [116℄ [51℄ [20℄ [110℄

Wide size rate DEs/FEs - - × X X X × X

Conta
t elem. typologies × - X X X × × X

Boundary shape variety X × X X X X X X

Multi-
onta
t X - X × X X X X

Simple X X X × × × X X

E�
ient × X × X × × X X

A

urate × × X × X X × X

Low storage X X × × × × X X

Upgradable to CSM × × X X X X X X

Large indentation × X × × X∗ X∗ × X∗
Conta
t 
ontinuity × - X∗ × X∗ X∗ X∗ X∗
Symbol (X) implies that the method satis�es the property while (×) indi
ates that the method

does not satisfy the property. Symbol (-) denotes that the property does not apply to that

method and (X∗) means that, the method satis�es the property upon some limitations.

Table 3.1 summarizes the strengths and drawba
ks of the reviewed 
onta
t dete
tion

methods. Methods whi
h have a elimination pro
edure to remove the invalid 
onta
ts

(RIGID-II [116℄, Hu et al. [51℄, Chen et al. [20℄ and H2
) are the most a

urate. They

treat the 
ases with large indentations (relative to the FE size) and provide a solution to

the 
onta
t 
ontinuity in non-smooth boundary regions. These methods have, however,

some limitations due to the fa
t that the real deformed geometry of the sphere is not

represented in the DEM. Due to this fa
t, error in the 
onta
t dete
tion in 
on
ave

transitions is 
ommon for all these methods (in
luding the H2
). This is analysed in

se
tion 3.5.
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3.2 DE-FE 
onta
t dete
tion algorithm

The strategy of dividing the sear
h into global and lo
al stages also applies to the DE-

FE 
ollision dete
tion. In the same way, the methods des
ribed in se
tion 2.2 regarding

the global sear
h 
an be also used here. The 
ell-based algorithm presented in [140℄

has been sele
ted for the global sear
h due to its simpli
ity and the possibility to be

parallelized.

As it has been appointed in se
tion 2.2, the most expensive part of the 
ollision dete
tion

lies on the lo
al resolution whi
h 
an rea
h values over 75 per
ent of the simulation

when non-spheri
al elements are involved [49℄. To that end, a spe
ialized algorithm

has been developed for the 
ase of 
ollision between spheres (parti
les) and triangles or

quadrilaterals (boundary elements) whi
h is parti
ularly e�
ient. Moreover, a further

split of the Lo
al Conta
t Resolution is performed: a) A Fast Interse
tion Test, b) Full


hara
terization of valid 
onta
ts. Figure 3.3 shows the di�erent stages of the sear
h.

3.2.1 Global Sear
h algorithm

The main purpose of the Global Sear
h is to determine through a fast rough sear
h whi
h

are the potential neighbours for every element in the domain. A 
ell-based algorithm

[140℄ is 
hosen here whi
h has been parallelized in OMP and adapted for the DE-FE

sear
h. The FE domain is sele
ted to build the sear
h bins taking advantage of the

fa
t that usually the spatial distribution of the FEs is more regular and in some 
ases

�xed. As an additional feature, the Sear
h Bins is built dynami
ally 
onsidering only

the elements belonging to the interse
tion of the bounding boxes of the DEs and FEs

domains, FE ∈ ΩI and DE ∈ ΩI . Fig. 3.1(a) shows how the interse
tion evolves as

long as the simulation goes on. On the other hand, only the DEs inside the interse
-

tion domain (ΩI) will look for their neighbours. This redu
es signi�
antly the 
onta
t

pairs to be 
he
ked afterwards and, therefore, the global sear
h performan
e is in
reased.

In the global sear
h, every FE and DE has an asso
iated Bounding Box (FEBBX , DEBBX)

that is used to tag the position of the elements on the Sear
h Bins and rapidly 
he
k

for potential neighbours. This is done using a hash table stru
ture as depi
ted in �g.

3.1(d) whi
h relates ea
h 
ell to the bounding box FEBBX that fall into it. Re
tangular

hexahedral bounding boxes en
ompassing both types of elements are 
hosen here.
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The steps needed to perform the neighbouring sear
h at the Global Sear
h level are:

a) Set the bounding box of the inter-

se
tion of domains ΩI (�g. 3.1(a)).

b) Set the bounding box for every

FE ∈ ΩI (�g. 3.1(b)).


) Generate the Sear
h Bins based on

the size and position of the bound-

ing boxes FEBBX of the FE ∈ ΩI

(�g. 3.1(
)).

d) Pla
e every FE in the Sear
h Bins

(based on their asso
iated bounding

box FEBBX 
oordinates) and build

the hash table (�g. 3.1(d)).

e) Set the bounding box for every

DE ∈ ΩI (�g. 3.1(e)).

f) For every DE parti
le ∈ ΩI obtain

the FE potential neighbours in the

Sear
h Bins. Che
k the interse
tion

of the DEBBX with the FEBBX of

the FEs lying in the surrounding


ells (�g. 3.1(f)).

g) Apply the Lo
al Resolution Method

to the pairs with interse
ting bound-

ing boxes (�g. 3.1(g)).

(a) Evolution of ΩI

(b) FEBBX ∈ ΩI

(
) Bins over FEs

∈ ΩI

(d) Hash table

(e) DEBBX ∈ ΩI

(f) Interse
tion


ells

(g) Lo
al Conta
t

Resolution

Figure 3.1: Global sear
h stages
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3.2.2 Lo
al Conta
t Resolution

Normally a full 
hara
terization takes pla
e after the global sear
h and determines 
om-

pletely the 
onta
t status of ea
h potential 
onta
t pair. In this thesis a split is suggested:

• Fast Interse
tion Test: First, the a
tual 
onta
ting pairs are determined. This

has to be fast be
ause there are many FE potential neighbours in the adja
ent 
ells

to be 
he
ked. Therefore, all detailed 
onta
t 
omputations su
h as determining

the type of 
onta
t, the 
onta
t point, normal dire
tion, et
. are skipped. On the

other hand, a good a

ura
y in the determination of the 
onta
ting neighbours

is needed. It should be avoided to �ll the 
onta
t pool with FE whi
h do not

have 
onta
t and have to be eliminated or treated subsequently. This pro
edure

is des
ribed in detail in se
tion 3.3.

• Full 
onta
t 
hara
terization: A more expensive 
he
k takes pla
e whi
h de-

termines the type of 
onta
t of every neighbour, whi
h are the relevant 
onta
ts

and whi
h ones have to be removed in order to avoid instabilities or redundant


onta
t evaluations in non-smooth regions and 
onta
t transitions. All the de-

tailed 
onta
t 
hara
teristi
s are fully determined at this stage for ea
h one of the

valid neighbouring entities.

The split gives the 
ode higher modularity, i.e. any other 
onta
t 
hara
terization


an be applied for the 
onta
ting entities. Moreover, in the in-house 
ode Kratos, the

split yields also higher e�
ien
y (see table 6.2 in 
hapter 6). This is due to the fa
t

that the full 
hara
terization is a mu
h more expensive pro
edure than the simple Fast

Interse
tion Test, and at the same time, the �rst group of FE potential neighbours is

very large in 
omparison to the group of FE with 
onta
t.

In order to demonstrate this, an example of a horizontal mixer with approximately

30 k DEs and 2.5 k FEs has been run for 0.5 se
ond, i.e. 1.5 turns of the heli
al blades

(full des
ription in se
tion 6.2.2). The 
umulative 
ounts of the following quantities is


omputed:

• FE Potential neighbours: The number of times the Fast Interse
tion Test (se
tion

3.3) is 
alled (number of FE potential neighbours to be 
he
ked) averaged over the

number of parti
les.

• FE with 
onta
t : The average number of FE per parti
le that yield a positive

result (have interse
tion with sphere) in the Fast Interse
tion Test.
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• Entity with valid 
onta
t : The average number of relevant entities per parti
le

determined by the H2
Method.
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Figure 3.2: Counts of FE 
he
ks in di�erent stages

Fig. 3.2 presents the results whi
h show that the number of FE Potential Neighbours to

be treated is large 
ompared to the FE with a
tual 
onta
t, a ratio of 30 : 1. Addition-

ally, as it will be shown in 
hapter 6, the improvement in performan
e showed in Table

6.2 it 
an be 
on
luded that it is a good 
hoi
e to perform the split whi
h additionally

brings modularity to the 
ode.

Figure 3.3 summarizes the stages in whi
h the neighbour �nding is divided.

Figure 3.3: Neighbour �nding s
heme
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3.3 Fast Interse
tion Test

An e�
ient algorithm designed to determine the interse
tion of spheres 
onta
ting tri-

angles or planar quadrilaterals is des
ribed here. Some of the pro
edures existing in

the 
omputer graphi
s bibliography [33, 57℄ have been adapted to the 
ase where the

fa
et 
onta
t (inside of the FE) o

urs in a substantial higher frequen
y 
ompared to

edge and vertex geometri
al 
onta
t types. See [51℄ where the type of 
onta
t frequen
y

(fa
et, edge, vertex) is determined for di�erent number of parti
les and relative sizes.

The test works for any planar 
onvex polygons of N sides. For every DE ∈ ΩI we loop

over the FE potential neighbours provided by Global Neighbour Sear
hing algorithm.

Every FE with valid 
onta
t is stored in an array for every DE.

3.3.1 Interse
tion test with the plane 
ontaining the FE

The �rst 
he
k is to determine whether the parti
le interse
ts the πm
plane formed by

the m− th planar �nite element

e©m
. This is represented in �g. 3.4.

Figure 3.4: Interse
tion of a DE parti
le with a plane formed by a plane FE

The outward-pointing normal of the plane 
an be 
al
ulated with the 
ross produ
t

T of any pair of edges taken 
ounter-
lo
kwise. This 
an be written in the following

form, using the permutation tensor ǫijk on two edges formed, for example, by the three


onse
utive verti
es v
1
, v

2
, v

3
:

Ti = ǫijk(v
2
j − v1j ) · (v3k − v2k) (3.1)

whi
h has to be normalized to unit length to obtain the normal to the plane n:
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n =
T

‖T ‖ (3.2)

In the 
ase of a zero-thi
kness wall whi
h 
an have 
onta
t at both sides of the FE,

the sense of the normal will be set su
h that points outwards to ea
h parti
le 
entre.

On
e the normal is de�ned, the distan
e of the DE 
entre C to the plane πm

an be

determined taking any known point of the plane, namely a vertex va, as

dπ =

3
∑

i=1

(ni · Ci − ni · vai ) (3.3)

The distan
e dπ should be 
ompared to the radius R. If and only if |dπ| ≤ R, the


onta
t between the sphere and the FE is possible. In this 
ase, we pro
eed with the

next 
he
ks. Otherwise, the 
onta
t with the 
urrent FE is dis
arded and we will jump

to 
he
k the next potential FE neighbour.

3.3.2 Inside-Outside test

The purpose of this test is to determine whether the 
onta
t is inside the FE (fa
et


onta
t) or outside (edge, vertex or no 
onta
t). It applies to the 
ases whi
h |dπ| ≤ R.

A modi�
ation of the Inside-Outside status 
he
k [135℄ is used. The proje
tion Cπm
of

the 
entre C of a DE onto the plane πm
formed by an element

e©m
with normal n 
an

be 
al
ulated as

Cπm = C− dπ · n (3.4)

The next step is to evaluate whether the proje
tion Cπm
lies inside or outside the FE

e©m
with respe
t to every edge ea

formed with the verti
es v
a
and v

a+1
(v

N = v
0
) (See

�g. 3.5). For every edge ea
we 
ompute the 
ross produ
t sign sa as

ea = v
a+1 − v

a
(3.5)

sa = (ea × (Cπm − v
a)) · n (3.6)

If the produ
t is positive, the proje
tion point Cπm
turns to be inside the triangle

with respe
t to that edge. The loop pro
eeds with the next edges. If the same result

is found for every edge, 
onta
t o

urs with the fa
et of the FE (Inside) and so the
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onta
t is assured. Otherwise, if for any edge an Outside status is found, the loop

aborts automati
ally and no 
onta
t with fa
et 
an be found. The 
urrent value of the

edge index a is stored in an auxiliary variable indexe whi
h will be used in the next step

where 
onta
t with verti
es or edges is 
he
ked.

Figure 3.5: Inside-Outside 
he
k of the proje
tion point edge by edge

3.3.3 Interse
tion test with an edge

This test is needed for the 
ases where |dπ| ≤ R but the Inside-Outside test failed. Here

we use the idea that the edge 
onta
t 
an not happen to be on the edges where the

Inside-Outside 
he
k yield a Inside status. Therefore, it is re
ommendable to test the

edges ea
with a ∈ [indexe, N ] starting from the vertex whi
h failed in the previous test

and skipping the previous ones (Note that the edge 
he
k is the most expensive one).

This approa
h has also been used by Chen et al. [20℄.

First, the shortest distan
e de between the edge ea
and the parti
le 
entre C should

be 
al
ulated and 
ompared to the radius R. The distan
e is 
al
ulated �nding out the


onta
t point Pc, as

de = ‖Pc−C‖ (3.7)

Pc = v
a + p

ea

‖ea‖ (3.8)

ea = v
a+1 − v

a
(3.9)

where p is the distan
e resulting from the proje
tion of the ve
tor 
onne
ting the 
entre

C and the vertex v
a
onto the edge ea

:
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p = (C − v
a) · ea

(3.10)

Figure 3.6: Interse
tion of a DE parti
le with an edge

If de > R the 
onta
t with this edge is not possible and the 
he
k starts again with the

next edge ea+1
. Otherwise, if de ≤ R we determine where the Pc lies, along the edge,

with the help of η, de�ned as:

η =
p

‖ea‖ (3.11)

The 
ase of 0 ≤ η ≤ 1 implies edge 
onta
t. Therefore 
onta
t is found and the Fast

Interse
tion Test �nishes yielding a positive result. The FE neighbour is saved to the


urrent DE and the algorithm pro
eeds to 
he
k the next FE potential neighbour.

Otherwise, if this test failed for the 
urrent edge ea
, the 
onne
ting verti
es (v

a
and

v
a+1

) have to be evaluated. A value of η < 0 indi
ates that the 
he
k has to be done

with v
a
; on the other hand, for η > 1 the vertex to be tested is v

a+1
.

3.3.4 Interse
tion test with a vertex

For the vertex v
a
under 
onsideration the squared distan
e to the DE 
entre C is


al
ulated:

dva
2 =

i<3
∑

i=0

(Ci − v
a
i )

2
(3.12)

If dva
2 ≤ R2

, then the Fast Interse
tion Test yields a positive result and the test �nishes.

Otherwise, the test moves on with the next edge ea+1
and its subsequent verti
es.
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We re
all that the purpose of this Fast Interse
tion Test is merely to determine whether

there is interse
tion or not between the DE sphere and the FE planar 
onvex polygon.

An interse
tion found with a vertex or edge does not ensure that this is the a
tual 
onta
t

point. In this 
ase, however, we omit at this stage further 
he
ks with subsequent edges

or verti
es where the 
onta
t point 
an happen to be 
loser.

3.3.5 Fast Interse
tion Test algorithm

Table 3.2: Fast Interse
tion Test s
heme

Parallel loop over all DE, 
he
k FE potential neighbours.

(1) Interse
tion with plane 
ontaining the FE

e©m

Cal
ulate normal outwards n = T

‖T ‖ , Ti = ǫijk(v
2
j−v1j )·(v3k−v2k).

Cal
ulate distan
e to plane dπ =
3
∑

i=1

(ni · Ci − ni · vai ).

if( |dπ| > R ): ⇒ Go to (4) (False).

else: ⇒ Cal
ulate Cπm = C− d · n and Go to (2).

(2) Inside-Outside test

Initialize indexe = 0 and Inside-Outside �ag = In.

loop over every edge ea = v
a+1 − v

a
with a ∈ [0, N ].


al
ulate sa = (ea × (Cπm − v
a)) · n.

if(sa < 0): ⇒ Inside-Outside = Out.

Break loop. Save indexe = a. Go to (3).

else(sa ≥ 0): ⇒ Continue with next edge.

if(Inside-Outside �ag == In): ⇒ Go to (4) (True).

else: ⇒ Go to (3).
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(3) Interse
tion with Edge and Vertex

loop over every edge ea
with a ∈ [indexe, N ].

Cal
ulate proje
tion: p = (C − v
a) · ea

.

Cal
ulate the 
onta
t point: Pc = v
a + p e

a

‖ea‖ .

Cal
ulate distan
e to edge de = ‖Pc−C‖.
if(de > R): ⇒ Continue with next edge.

else: Cal
ulate η = p
‖ea‖ .

if(0 ≤ η ≤ 1 ): ⇒ Go to (4) (True).

if(η < 0): ⇒ d2va =
i<3
∑

i=0

(Ci − v
a
i )

2
.

if(d2va ≤ R2
): ⇒ Go to (4) (True).

else: ⇒ 
he
k next edge.

if(η > 1): ⇒ d2va+1 =
i<3
∑

i=0

(

Ci − v
a+1
i

)2
.

if(d2va+1 ≤ R2
): ⇒ Go to (4) (True).

else: ⇒ 
he
k next edge.

Go to (4) (False).

(4) Conta
t Found (True/False)

True: ⇒ Store

e©m
as FE with 
onta
t and Continue.

False: ⇒ Stop! No 
onta
t.

The presented algorithm applies to any planar 
onvex polygons of N sides.
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3.4 The Double Hierar
hy Method

The appli
ation of 
onstitutive 
onta
t laws su
h as the Hertz-Mindlin (se
tion 2.5.2)

requires that the 
onta
t surfa
es are smooth and present a unique normal at ea
h

point. In the DE-FE 
onta
t, usually, the original geometry presents regions where

this requirement is not ful�lled. Moreover, even the smooth surfa
es loose this feature

when they are dis
retized by means of FEs. In these situations a spe
ial treatment of

the non-smooth regions should be applied under the requirement of some 
onditions to

ensure reasonable results. The following 
onditions were also analysed in the work by

Wellmann [136℄:

• The 
onta
t 
onstitutive model will be applied normally when the 
onta
t is on

the fa
et and will vanish when there is no interpenetration between the elements.

• There should be no dis
ontinuities in the 
onta
t for
e when a 
onta
t point evolves

from fa
et to edge and the other way round in order to avoid non-physi
al results

and numeri
al instabilities.

• The energy should be 
onserved in an elasti
 fri
tionless impa
t.

The use of the present 
onta
t determination algorithm helps the sele
ted 
onta
t model

ensuring these obje
tives as it will be shown through the validation examples in se
tion

3.6.

This pro
edure is applied to the list of FE with 
onta
t that the Fast Interse
tion Test

has generated for every parti
le. In the 
ase of no previous fast 
he
k this operation


ould be dire
tly applied as a Lo
al Conta
t Resolution with the disadvantage that

many potential FE have to be tested. It is developed in two di�erent stages:

• Conta
t Type Hierar
hy (se
tion 3.4.1): where for every FE with 
onta
t the

entity with higher priority is determined.

• Distan
e Hierar
hy (se
tion 3.4.2): the elimination pro
edure takes pla
e deter-

mining whi
h 
onta
t points have distan
e priority over others whi
h are redundant

or false and have to be eliminated.
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3.4.1 Conta
t Type Hierar
hy

The basis of this pro
edure is that ea
h primitive has hierar
hy over its sub-entities, i.e.,

a fa
et of a N-sides polygon has hierar
hy over the N edges that 
ompose it. In turn

ea
h of the edges ea
has hierar
hy over its two verti
es v

a,va+1
. Figure 3.7 outlines

the Conta
t Hierar
hy for a triangle. The algorithm is organized as a sequen
e of three

entity-
he
king levels. If a parti
le is in 
onta
t with the fa
et of a FE the 
onta
t sear
h

over its edges and verti
es, whi
h are in a lower hierar
hy level, is dis
arded (see �g.

3.8). Otherwise, if 
onta
t with the FE fa
et does not exist, the 
onta
t 
he
k should


ontinue over the sub-entities. Similarly, at the edges level, any 
onta
t with an edge


an
els out further 
onta
t 
he
ks for those two verti
es belonging to that edge. It does

not 
an
el out, however, the 
onta
t 
he
k with the other edges be
ause they are at the

same hierar
hy level. Table 3.3 in se
tion 3.4.1 displays the pseudo
ode of the 
onta
t

Type dete
tion.

Figure 3.7: Conta
t Type Hierar
hy for

a triangle

Figure 3.8: Conta
t with fa
et. Edges

and verti
es are dis
arded from 
onta
t


he
k

Every time a new 
onta
t entity is determined by the Conta
t Type Hierar
hy, the Dis-

tan
e Hierar
hy (se
tion 3.4.2) takes pla
e immediately after. The Distan
e Hierar
hy

will determine if the new 
onta
ting entity found is redundant or non-valid, if it 
an
els

out the previously found ones or if it is a new valid 
onta
ting entity to be 
onsidered

for the DE.
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For any valid 
onta
t entity the geometri
al 
onta
t 
hara
teristi
s that will be stored

are:

• The 
onta
t Point Pc.

• The FE nodal weights.

• The 
onta
t type: Fa
et, Edge or Vertex.

Note that some of the geometri
al 
hara
teristi
s su
h as the distan
e, the normal ve
tor

or the 
onta
t lo
al axis 
an be re
al
ulated later when the 
onta
t 
onstitutive law is

applied and, thus, it is optional to store them here at this stage.

Fa
et level

The 
he
k pro
eeds in the same way as explained in se
tion 3.3, 
he
king for the interse
-

tion of the DE with the plane formed by the FE (se
tion 3.3.1). If the Fast Interse
tion

Test has been performed previously |dπ| ≤ R is ne
essarily true sin
e 
onta
t has been

found for this FE. Otherwise, if no previous Fast Interse
tion Test has been 
arried out,

this 
ondition applies now to dis
ard FE without 
onta
t.

Next, the Inside-Outside test (se
tion 3.3.2) has to be performed. This test will tell

us whether the proje
tion Cπm
(equation 3.4) lies on the fa
et (inside the FE) or it is

outside, 
onta
ting with the edges or verti
es. Fig. 3.9 shows two examples where the

proje
tion Cπm
is inside and outside the FE fa
et.

(a) Cπm
inside the fa
et (b) Cπm

outside the fa
et

Figure 3.9: Example of proje
tion Cπm
inside and outside the FE fa
et
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The values of the 
ross produ
t sign sa obtained from equation 3.6 for every edge ea

are used to obtain the weights of the shape fun
tion at the 
onta
t point. The areas

needed for the 
al
ulation are simply one half of the 
ross produ
t sign: ∆a = sa/2.

The weights of the nodal shape fun
tions on the 
onta
t point are then 
al
ulated. For

a triangle:

N1 =
∆2

∆̂T

, N2 =
∆3

∆̂T

, N3 =
∆1

∆̂T

where ∆̂T = ∆1 +∆2 +∆3 (3.13)

For 4-nodded 
onvex quadrilaterals (�g. 3.10 the following expression 
an be applied

as introdu
ed in Zhong [148℄):

Figure 3.10: Triangular areas for the 
al
ulation of shape fun
tion values in a planar


onvex quadrilateral

N1 =
∆2∆3

∆̂Q

, N2 =
∆3∆4

∆̂Q

, N3 =
∆4∆1

∆̂Q

, N4 =
∆1∆2

∆̂Q

where ∆̂Q = (∆1 +∆3)(∆2 +∆4)

(3.14)

Note that if any of the 
ross produ
t signs sa evaluated with respe
t to the edge ea

yields a negative value the 
he
k stops sin
e the proje
tion of the 
entre Cπm
lies outside.

The 
urrent edge index indexe is stored and it will be the �rst to be 
he
ked as it has

been appointed in se
tion 3.3.3.

If the proje
tion Cπm
(equation 3.4) lies inside the fa
et, it be
omes the 
onta
t point

Pc. Due to the highest hierar
hy level of the fa
et, the Conta
t Type Hierar
hy �nishes

here for this FE. The Distan
e Hierar
hy is now 
alled and all the ne
essary 
onta
t


hara
teristi
s are saved.
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Edge level

Here the edge 
he
k (se
tion 3.3.3) has to be applied for every edge ea
with a ∈

[indexe, N ] in a N-sided FE starting with the �rst edge that yielded an outside sta-

tus at the Fa
et level.

When 
onta
t with the edge ea
is found the 
he
k at the lower level for the verti
es

asso
iated to it, v
a
and v

a+1
, is dis
arded (�g. 3.11). The 
onta
t 
he
k with the fol-

lowing edges 
an not be dis
arded, however, sin
e they are at the same hierar
hy level

in terms of Conta
t Type. The Distan
e Hierar
hy will determine the validity of the

new 
onta
t and eliminate or substitute previous ones. This is a key di�eren
e with the

Fast Interse
tion Test where the 
he
k automati
ally stops on
e a 
onta
t entity is found.

Figure 3.11: Conta
t with edge. Ver-

ti
es belonging to that edge are dis-


arded

Figure 3.12: Weights for an edge 
on-

ta
t in a triangle

The nodal weights 
an be obtained from the η parameter (equation 3.11) at the edge

ea
. Fig. 3.12 shows graphi
ally how η is determined,

Na = 1− η, Na+1 = η (NN = N0) (3.15)
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Equation 3.15 gives the values at the nodes 
onne
ted to the edge ea
. The rest of

nodes have a null value for its shape fun
tions. If the edge 
onta
t 
he
k failed but the

distan
e de (equation 3.7) is lower than the radius (de ≤ R) the 
losest vertex (based on

the 
al
ulation of η) will be 
he
ked. The 
he
k will pro
eed in any 
ase (found edge,

found vertex or none) with the next edges.

Vertex level

The vertex 
he
k is des
ribed in se
tion 3.3.4. Fig. 3.13 illustrates why the edge ea
has

hierar
hy over its two verti
es v
a,va+1

but not over the non-
ontiguous one v
a+2

. The

shape fun
tion weights are 1 for the found vertex and 0 for the rest.

Figure 3.13: Conta
t with edge and vertex. When 
onta
t exists with edge e1
it 
an

also exist with vertex v
3

As usual the Distan
e Hierar
hy is 
alled after the 
onta
t is dete
ted and, if the 
onta
t

is valid, its 
hara
teristi
s are stored.
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Conta
t Type Hierar
hy s
heme

The s
heme of Table 3.3 assumes that the Fast Interse
tion Test has taken pla
e already.

For every DE the �rst loop is over the found neighbours. The 
he
k 
an be performed

in parallel for every parti
le in the model.

Table 3.3: Conta
t Type Hierar
hy algorithm

loop over every FE with 
onta
t neighbour

e©m
.

(1) Fa
et level

Proje
t the 
entre onto the plane Cπm
(equation 3.4).

Perform the Inside-Outside test (se
tion 3.3.2)

if Conta
t: ⇒
Go to Distan
e Hierar
hy (Table 3.4) and Stop!

else: ⇒ Go to (2) with index indexe.

(2) Edge level

loop over every edge ea
with a ∈ [indexe, N ].

Perform the Edge Che
k (se
tion 3.3.3).

if Conta
t ⇒ Go to Distan
e Hierar
hy (Table 3.4).

else if (de ≤ R and η < 0) ⇒ Go to (3) with v
a
.

else if (de ≤ R and η > 1) ⇒ Go to (3) with v
a+1

.

Continue with the next edge.

(3) Vertex level

Perform Vertex 
he
k (se
tion 3.3.4).

if Conta
t ⇒ Go to Distan
e Hierar
hy (Table 3.4).

Go To Edge level and 
he
k next edge.



82 The Double Hierar
hy (H2
) Method for DE-FE 
onta
t dete
tion

3.4.2 Distan
e Hierar
hy

A spheri
al parti
le 
an be, in general, in 
onta
t with many di�erent FE entities. Some-

times these 
onta
ts are result of the penetrations introdu
ed by the penalty method

and some 
onta
ts give redundant or invalid information and, therefore, should be elim-

inated. This is the s
enario shown in �g. 3.14 where 
onta
t with elements

e©2
,

e©3
and

e©4
is dete
ted. In a 
ollision of the sphere normal to the plane, the for
e applied by the

plane surfa
e to the sphere must have also a normal dire
tion and a magnitude only given

by the penetrations and independent of the position x and y on the plane. Therefore the


onta
t for
e 
oming from the edges of elements

e©2
and

e©4
should not be taken into a
-


ount. This is solved by the distan
e-based hierar
hy whi
h is an elimination pro
edure

that takes pla
e every time a new 
onta
t entity is found at the Conta
t Type Hierar
hy.

The pro
edure basi
ally 
ompares the 
onta
t ve
tors against their proje
tions one

another. The new 
onta
t ve
tor Vci = C−Pci is proje
ted onto the previously found


onta
t ve
tor Vcj = C−Pcj and vi
e versa. The following expressions are obtained:

Pri,j = Vci ·
Vcj

‖Vcj‖
, P rj,i = Vcj ·

Vci

‖Vci‖
(3.16)

Figure 3.14: Conta
t between a DE and a FE mesh whose elements are smaller than

the indentation
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The 
onta
t 
he
k is performed using the algorithm presented in Table 3.4:

Table 3.4: Distan
e Hierar
hy 
he
k

Given a new found 
onta
t i by the Conta
t Type Hierar
hy:

(1) loop over every existing 
onta
t (j = 1, ..., n)

Proje
t Vci on Vcj: ⇒ Pri,j = Vci · Vcj

‖Vcj‖

Proje
t Vcj on Vci: ⇒ Prj,i = Vcj · Vci

‖Vci‖

if ( Pri,j ≥ ‖Vcj‖ ): ⇒ i is an invalid 
onta
t.

Go to (2) (False) and break loop.

else if ( Prj,i ≥ ‖Vci‖ ): ⇒ j is an invalid 
onta
t.

Dis
ard j ! Continue loop.

Go to (2) (True).

(2) Valid 
onta
t (True/False)

if ( True ): ⇒ i is valid 
onta
t! Save 
onta
t details.

else ( False ): ⇒ i is an invalid 
onta
t! Dis
ard i!.

Figures 3.15 and 3.16 show an example of how the elimination pro
edure is performed

for two di�erent possible 
ases. On the left side all the found 
onta
t ve
tors are repre-

sented. A graphi
al interpretation of the proje
tions is also given for the �rst example.

On the right side only the �nal relevant 
onta
t ve
tors, that the Distan
e Hierar
hy

yields, are shown.

In the �rst situation (�g. 3.15), no 
onta
t with edges of elements

e©2
and

e©4
is taken

into a

ount, sin
e their proje
tions, Pr2,3 and Pr4,3, over the fa
et 
onta
t ve
tor of

element

e©3
have the same module as the 
onta
t ve
tor Vc3 itself.
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(a) Found 
onta
t points and ve
tors (b) Relevant 
onta
t ve
tors

Figure 3.15: Elimination pro
edure in situation 1

(a) Found 
onta
t points and ve
tors (b) Relevant 
onta
t ve
tors

Figure 3.16: Elimination pro
edure in situation 2

In the se
ond situation (�g. 3.16), the sphere has 
onta
t with the fa
et of element

e©4
, the edge of element

e©3
and the shared edge of elements

e©1
and

e©2
whi
h will

be appearing as two di�erent 
onta
t ve
tors Vc1 and Vc2 given by the Conta
t Type

Hierar
hy stage. These ve
tors do not appear dire
tly in the �gures but they are 
al
u-

lated by C−Pc1 and C−Pc2 respe
tively. First, note that either 
onta
t with Vc1

or Vc2 will be arbitrarily dis
arded by the elimination pro
edure sin
e they are mathe-

mati
ally the same ve
tor. Let us assume the Vc1 is kept and Vc2 dis
arded. On the

other hand, the proje
tion Pr3,4 of the 
onta
t ve
tor Vc3 over the 
onta
t ve
tor Vc4

dis
ards 
onta
t with element

e©3
. Finally, 
onta
ts with element

e©4
and

e©1
do not

dis
ard ea
h other sin
e their proje
tions one another have a value of Pr1,4 = 0 and

Pr4,1 = 0 (they form a 90 degrees angle) and therefore are smaller than the length of

the 
onta
t ve
tors. Hen
e both 
onta
ts are taken into a

ount, as it is expe
ted.
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The main advantage of this method lies in its wide generality. It works �ne for most of

the traditional 
on�i
tive situations where multi-
onta
ts and FE transitions are present.

It is 
onsistent and so the order in whi
h the neighbours have been found and stored

does not a�e
t the �nal result. The tests 
arried out in the validation (se
tion 3.6) show

that the for
e ve
tor always has the appropriate dire
tion.

3.4.3 Note on types of FE geometries

Taking advantage of the generality of the method, the full algorithm 
an be applied

dire
tly to any N-sided planar 
onvex polygonal FE. The weights 
an be 
al
ulated

with the bary
entri
 
oordinates [79, 117℄ as:

Ni =
cot(αi) + cot(βi)

‖Pc− vi‖2
(3.17)

The de�nition of αi and βi is shown in �g. 3.17.

Figure 3.17: Angles formed with the ve
tor v
i−Pc and ea
h of the two edges 
onne
ted

to node i in a polygon

Conta
t surfa
es with non-planar quadrilaterals or other 
urved elements are not on

the s
ope of this paper. Generally it involves a minimization problem [141℄. However,

Chen [20℄ proposes an averaging of the normal and a relaxed 
onta
t 
riterion.
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3.4.4 Note on types of DE geometries

As dis
ussed in se
tion 2.7, industrial appli
ations demand the use of more a

urate

strategies to model the parti
les rather than using spheres. The most popular methods

are the superquadri
s [136℄, level set fun
tions [3℄, or 
luster of spheres [39℄. The 
hoi
e of

modelling generi
 parti
les with the sphere 
lustering te
hnique provides a solution with

a good ratio between a

ura
y and 
omputational 
ost. This approa
h adapts perfe
tly

to the presented algorithm and, therefore, yields a fast 
onta
t dete
tion whi
h is fully

parallelizable.

3.5 Method limitations

One of the major limitations or sour
e of errors of the method is the inherent la
k of

a

ura
y that a FE mesh dis
retization introdu
es to a model. This has an e�e
t in the

error dete
tion and therefore globally a�e
ts on the overall apparent fri
tion. Details of

this 
an be found in [18℄; in this se
tion only the lo
al e�e
ts in terms of normal and

tangential for
es are analysed.

3.5.1 Normal for
e in 
on
ave transitions

A limitation of this method whi
h is 
ommon to the revised penalty-based 
onta
t al-

gorithms o

urs when a DE 
onta
ts with a slightly non-
onvex surfa
e. Here the error

introdu
ed by the method is analysed and quanti�ed for normal for
es in the 
ase of

spheri
al DE in 
on
ave transitions.

The penalty method introdu
es an indentation whi
h a

ounts for the lo
al elasti


deformation of the dis
rete element during a 
onta
t event and allows the imposition

of the 
onta
t 
ondition in a weak form. The use of rigid geometries with non-physi
al

indentation introdu
es error in the 
onta
t dete
tion. Constitutive laws su
h as Hertz-

Mindlin present a limitation in terms of small deformation in order to work �ne. This

rule does not apply, however, to non-smooth regions where the basi
 assumptions are

not met and 
onta
t dete
tion errors arise.
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(a) Error region (b) Conta
t with 2 planes

Figure 3.18: Error emerging in 
on
ave transitions

A sphere moves horizontally in a plane πa until it rea
hes a transition with other plane

πb whi
h forms an a
ute angle α with the plane πa (�g. 3.18(a)). In this situation a

region 
an be de�ned between the 
urrent 
onta
t plane πa and the plane πn formed by

the 
ommon edge and the normal of the se
ond plane nb. Whenever the sphere 
entre is

in that region a dis
ontinuity in for
es will o

ur. The 
onta
t with plane πb is dete
ted

only when the 
entre C has a normal proje
tion onto the plane πb forming a tangential


onta
t. Fig. 3.18(b) shows that when the new 
onta
t is dete
ted, some indentation t

is existing already and, therefore, the new 
onta
t for
e value introdu
es a dis
ontinuity.

From the geometri
al relations, the error ξ 
an be quanti�ed as a ratio of the absolute

value of the new for
e ‖F nb
‖ over the absolute value of the 
urrent for
e ‖F na

‖. This
value 
an be expressed in fun
tion of the 
hange of angle α and indentation ratio t/δ

relative to the sphere radius R:

ξ =
‖F nb

‖
‖F na

‖ =

{

t/δ for linear 
ase

(t/δ)3/2 for Hertzian 
ase

(3.18)

Using the geometri
al relationships and setting γ = δ/R as the relative indentation

measure, the following expression is obtained:

t =
R(γ − 1 + cosα)

cosα
(3.19)

Finally the following expression is found:

ξ =







γ−1+cosα
γ cosα

for linear 
ase

(

γ−1+cosα
γ cosα

)3/2

for Hertzian 
ase

(3.20)
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The solution is plotted for the two 
ases (linear and Hertzian) for di�erent 
hange of

angle α and di�erent γ indentation ratio.

0 10 20 30 40 50 60 70 80 90

Change of angle (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
o
r
m
e
a
su

re

γ = 0.001

γ = 0.01

γ = 0.033

γ = 0.1

γ = 0.25

γ = 0.5

γ = 0.75

γ = 0.98

Hertzian

Linear

Figure 3.19: Values of ξ measure error in fun
tion of 
hange of angle α and indentation

ratio γ

Fig. 3.19 shows that for an indentation of 1% of the radius (γ = 0.01) and a small


hange in the angle of about 10 degrees no error is produ
ed. For an indentation of 3.3%

however, the error measure rea
hes a value of ξ = 0.41 for the Hertzian 
ase (ξ = 0.55

for the linear 
ase) whi
h turns into a sudden for
e of magnitude ‖F nb
‖ = 0.41 ‖F na

‖
in the dire
tion of nb. The error tends to 0 as the angle 
hange tends to 90 degrees and

does not o

ur for obtuse angles. On the other hand, the lower the 
hange of angle α

is, the greater the error is. It is bounded to 100% of error ξ = 1.0 for the extreme 
ase

of 
oplanar transition. Lu
kily this very frequent 
ase is 
onsidered by the Distan
e

Hierar
hy (se
tion 3.4.2) where a toleran
e is used to dete
t the 
oplanar 
ases. Note

that the error depends only on geometri
al 
onditions and the indentation ratio relative

to the sphere and not to the boundary FE mesh quality, the dependen
e of whi
h has

been solved using the Double Hierar
hy Method.
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3.5.2 Tangential for
e a
ross elements

As introdu
ed in se
tion 2.5, the tangential for
e is applied by means of an in
remen-

tal s
heme whi
h requires to keep tra
k of the for
es that the parti
le has with ea
h

neighbour. In the DE/DE 
onta
t it is enough to transfer these for
es from the old

to the new neighbours a

ording to the parti
les' identi�er and properly rotating them

from the old axes to the new lo
al 
onta
t axes. The problem arises when a parti
le

moves a
ross two FE boundary elements. The histori
al tangential for
e would reset to

zero sin
e the new element in 
onta
t has a new identi�er and 
an be 
onsidered a new


onta
t. This happens even if the 
onta
t dete
tion is performed every time step.

Most of the 
ommon appli
ations won't yield large errors in this sense sin
e the tangen-

tial for
es is normally not developing up to high values. Parti
le rotation and damping

makes the tangential for
e 
ontribution small in 
omparison to the normal for
es. The


ases with larger error are the ones regarding sliding events without rolling where the

tangential for
e is kept at its maximum (generally the Coulomb fri
tion value). In this

situation the error 
an be measured in terms of the missing work in a for
e-displa
ement

diagram as the one showed in �g. 3.21 whi
h 
orresponds to a linear 
onta
t law [24, 113℄

for normal and tangential dire
tions.

Figure 3.20: S
hemati
 for
e displa
ement diagram with the dis
ontinuity introdu
ed

by an element transition during a sliding event using a linear 
onta
t law

In average, a parti
le with linear sti�ness values kn and kt sliding a
ross a transition

of �nite elements of 
hara
teristi
 length L with a relative indentation δ will have the

following error in the work done by the tangential for
e:
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Et =
‖ErrorArea‖
‖TotalArea‖ =

1/2(µδkn)
2/kt

µδknL− 1/2(µδkn)2/kt
=

µδkn/kt
2L− µδkn/kt

≈ µ

2

kn
kt

δ

L
(3.21)

As an example, using the linear model with a ratio κ = kt/kn of 2/7 (suggested in Shäfer

[113℄), with a parti
le-stru
ture fri
tion 
oe�
ient µ = 0.3 the error in the integral

of the tangential for
es over the displa
ement has a value of Et = 0.525 δ/L. For a

large indentation of 10% of the 
hara
teristi
 size L of the FE, the error is only of

approximately 5%.

This error gets greater however, for the 
ases where the sear
h frequen
y is low sin
e

the for
es may remain at zero until the new sear
h is performed. The 
orre
t tra
k of

the 
onta
t for
es and the dete
tion of new 
onta
ts are solved using a spe
ial imple-

mentation whi
h is des
ribed below.

Continuity of tangential for
es in non-smooth transitions

The proposed solution 
onsists in a
hieving the following: in a neighbouring sear
h event,

for every new neighbourN t+∆t
i with a 
onta
t point Pct+∆t

i at time t+∆t �nd the 
losest


onta
t point at the previous time step Pctj asso
iated to the old neighbour N t
j su
h

that the distan
e distPc =
∥

∥Pct+∆t
i − Pctj

∥

∥

for every old neighbour N t
j is minimum.

Additionally, this distan
e needs to be below a 
ertain bound to avoid asso
iations of

new neighbours 
oming from non adja
ent regions. This 
an be 
al
ulated as follows:

dist <= max
j

: ‖∆sj‖ (3.22)

where ∆sj is the relative tangential displa
ement at the 
onta
t point between the par-

ti
le i and �nite element j.

This pro
edure requires the dete
tion of the new FEs in the moment where the transition

takes pla
e. It 
an obviously be a
hieved if the 
onta
t dete
tion is performed every

step but this is not an e�
ient solution. Alternatively, an extended sear
h 
an be used

at several time steps together with a lo
al renewal of neighbours every time step whi
h

be
omes a mu
h more e�
ient solution. This is detailed as part of the implementation

of the distributed method in Appendix B.
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Example: Parti
le with imposed traje
tory sliding over a surfa
e

A sphere without rotation is given an imposed traje
tory to analyse how is the evolution

of the tangential for
e when sliding along an irregular surfa
e with 
on
ave and 
onvex

geometri
al parts and inter-element transitions (�g. 3.21). The paths 
orrespond to an

equidistant o�set of 0.1m to the underling geometry.

Figure 3.21: Point of 
onta
t moving a
ross two boundary FE

The simulation was run using a linear 
onta
t model (se
tion 2.5.1) with an exaggerated

parti
le-wall fri
tion of µ = 5 (78, 69◦) and an extremely large indentation of nearly

30% in order to make the error in the determination of the tangential for
e visible. The

tangential for
e is expe
ted to rapidly in
rease until the sliding o

urs, keeping the for
e

steady at value determined by the regularized Coloumb's fri
tion model. The rest of

parameters are des
ribed in Table 3.5.

Table 3.5: Simulation parameters

Material properties Cal
ulation parameters

Radius (m) 0.14 Conta
t Law Linear

Fri
tion 
oe�. DE-FE 5 Time step (s) 5 · 10−5

Young's modulus (Pa) 103 Neighbour sear
h freq. 1

Poisson's ratio 0.2 Simulation time (s) 5.5

Indentation Ratio 28.6%
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Figure 3.22: Shear for
e of an imposed movement with inter-element and non-smooth

transitions with the basi
 implementation

Figure 3.22 shows how every time the parti
le 
rosses over a non-smooth transition, the

for
e resets to zero when a 
onta
t algorithm is applied without spe
ial treatment of

the tangential for
es. This 
ase was run with a sear
h frequen
y of 1, i.e. performing a

sear
h every time step.

Figure 3.23: Shear for
e of an imposed movement with inter-element and non-smooth

transitions using the spe
ial implementation
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Figure 3.23 shows how the spe
ial implementation des
ribed above provides 
ontinuity

in the geometri
ally non-smooth regions as well as a
ross element transitions. The use

of the previously explained strategy allows the dete
tion of new in
oming 
onta
ts even

if the global sear
h is performed in a large time spa
ing; in this 
ase it was performed

every 100 time steps. The irregularity present in the plot 
orresponds to the 
on
ave

transition where the parti
le has brie�y two 
onta
ts: a new one whi
h starts to develop

and the old one whi
h is about to �nish. The numeri
al results present the expe
ted

behaviour.

3.6 Validation ben
hmarks

In this se
tion, several examples are 
arried out to test the performan
e of the Double

Hierar
hy method in di�erent aspe
ts. The following tests 
orrespond to a
ademi
al

examples de�ned in 
riti
al situations to validate the 
onta
t 
al
ulation pro
edure. All

ben
hmarks have been 
arried out using a Hertzian 
onta
t law (se
tion 2.5.2).

3.6.1 Fa
et, edge and vertex 
onta
t

These �rst three ben
hmarks are represented by a sphere, whi
h has low sti�ness in

order to a
hieve large indentation, 
onta
ting three di�erent boundaries meshed with

triangles. In every 
ase the sphere falls from the same height (1m) verti
ally and per-

pendi
ular to the 
onta
t entity whi
h is respe
tively a fa
et, an edge or a vertex. Sin
e

there is no damping applied, the energy should be 
onserved and the ball must return

to the initial position after the rebound. The sphere is expe
ted to follow a verti
al

traje
tory with identi
al results for the three 
ases. Fig. 3.24 shows the ben
hmarks

display and table 3.24 the simulation parameters.

Figure 3.24: Ben
hmark layout
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Table 3.6: Simulation parameters

Material properties Cal
ulation parameters

Radius (m) 0.3 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3
) 100 Gravity (m/s2) [0.0,−9.81, 0.0]

Fri
tion 
oe�. DE-FE 0.3 Time step (s) 1 · 10−5

Young's modulus (Pa) 1 ·105 Neighbour sear
h freq. 5

Poisson's ratio 0.2
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Figure 3.25: Ben
hmark results for the fa
et edge and vertex 
onta
t
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Graph in �g. 3.25(a) shows that, although the indentation is greater than the 30% of

the DE radius leading to multiple 
onta
ts with all kind of entities, the for
e is applied

only in the verti
al dire
tion (Y dire
tion). From this, it 
an be 
on
luded that the


onta
t elimination pro
edure performs 
orre
tly. The results are exa
tly the same in

the three di�erent s
enarios (fa
et, edge and vertex 
onta
t). It veri�es also that there

is no energy gain or dissipation sin
e the rebound maximum height is the same always

as it 
an be observed in �g. 3.25(b). This is a good test to see that the method works

properly for normal 
onta
ts of all three types: with fa
et, with edge and with vertex

independently of the mesh and the indentation a
hieved (always lower than the radius).

3.6.2 Continuity of 
onta
t

It is essential to ensure 
ontinuity of the 
onta
t for
e in the non-smooth 
onta
t regions

and FE element transitions. In the following example the 
ontinuity of the normal for
e

is presented. A DE is set to move along the boundary and its 
onta
t transfers from

the surfa
e of a triangular element (fa
et 
onta
t) to one of its edges or verti
es. A

fri
tionless and rotation free sphere has a traje
tory path enfor
ed (as shown in �g.

3.26) so that the indentation is always 
onstant (0.01 m either in 
onta
t with the fa
ets

f 1
and f 2

or with the edge e). The simulation parameters are the ones presented in

the table 3.6.

Figure 3.26: Simulation s
heme

If 
ontinuity is met, the for
e module must always be the same. The dire
tion of the


onta
t for
e should evolve from verti
al (normal to f 1
) to horizontal (normal to f2

)

with a smooth transition. This is a
hieved due to the fa
t that the algorithm gives

higher hierar
hy to the edge and the ve
tor is 
al
ulated joining the 
onta
t point and

the 
entre of the sphere.
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(a) Conta
t f
1

(b) Conta
t e (
) Conta
t e (d) Conta
t f
2

Figure 3.27: For
e applied by the surfa
e and the edge to the sphere at di�erent instants

of the simulation

The results show that no dis
ontinuities arise when the 
onta
t evolves from fa
et


onta
t to edge 
onta
t and vi
e versa, being the 
onta
t for
e 
onstant along all the

simulation and equal to 76.063 N, as expe
ted. In a in a 
on
ave transition however, as

reported in se
tion 3.5, the 
ontinuity of normal for
es a
ross di�erent elements is not

fully assured. Even though the error is very small for pra
ti
al situations, it is important

to quantify and be aware of.

3.6.3 Multiple 
onta
t

The goal of this test is to 
he
k that the method determines 
orre
tly the 
ase of a

sphere 
onta
ting more than one element. The set up of the example 
onsists of three

spheres falling onto a plane with three di�erent shape holes, as shown in �g. 3.28(a).

Simulation parameters are presented in table 3.7. In this example damping is applied.

Figure 3.28: Multiple 
onta
t test geometry
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Table 3.7: Simulation parameters

Material properties Cal
ulation parameters

Radius (m) 0.3 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3
) 100 Gravity (m/s2) [0.0,−9.81, 0.0]

Fri
tion 
oe�. DE-FE 0.3 Time step (s) 1 · 10−5

Young's modulus (Pa) 1 ·106 Neighbour sear
h freq. 1

Poisson's ratio 0.2

Restitution 
oe�. 0.4

Graph in �g. 3.29 shows the velo
ity modulus of ea
h of the DEs involved in the

simulation. It 
an be seen that the spheres velo
ity after 2.5 se
onds of simulation

is 
lose to 0, as expe
ted and a �nal equilibrium position is rea
hed for every sphere

involving simultaneous 
onta
ts with verti
es and edges.
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Figure 3.29: Velo
ity of the DEs
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3.6.4 Mesh independen
e

As appointed in the introdu
tion of se
tion 3.5 dedi
ated to the method limitations,

the use of 
lassi
 �nite elements to dis
retize a geometry introdu
es ina

ura
y in the

de�nition of the surfa
es. The obje
tive of this test is to 
he
k that the error in the

dis
retization 
omes only from that aspe
t and does not depend on the amount, size

and shape of the �nite elements that are used to mesh the surfa
es.

A ball slides with fri
tion on a horizontal plate with a given initial horizontal velo
ity.

The position of the sphere is set initially in verti
al equilibrium upon the plate. The

sphere should start sliding while its angular velo
ity will progressively in
rease up to

a 
onstant value at whi
h the sliding event �nishes and only rolling o

urs thereafter.

This is s
hemati
ally depi
ted in �g. 3.30(a).

(a) Problem de�nition (b) Simulation set up

Figure 3.30: Ben
hmark of a sliding sphere on a plane with fri
tion

The analyti
al solution 
an be 
al
ulated to validate the simulation using equilibrium

equations with kinemati
 
ompatibility 
onditions and the basi
 Coulomb fri
tion law.

The moment of inertia of a sphere is Iθ = 2/5mR2
. The following is obtained for the


ombined sliding and rotation phase:

v(t) = v0 − µgt (3.23)

x(t) = v0t− 1/2µgt2 (3.24)
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ω(t) =
Rµmg

Iθ
t =

5µg

2R
t (3.25)

Equation 3.25 
omes from integrating the angular a

eleration ω̇ for the 
ase zero

initial angular velo
ity. The 
onstant rolling event o

urs when the tangential velo
ity

v mat
hes the angular velo
ity ω times the radius R:

v = Rω (3.26)

tc =
2v0
7µg

(3.27)

For time t > tc the equations of motion are:

v(t) =
5

7
v0 (3.28)

x(t) =
12v20
49µg

+
5

7
v0(t− t0) (3.29)

ω(t) =
5v0
7R

(3.30)

The set up of the simulation is shown in Figure 3.30(b). Two 
ases are 
ompared, one

involves sliding on a plane dis
retized by a single quadrilateral element while in the other


ase the plane is dis
retized by 80 triangular elements. The parameters of the simulation

are the same as in the previous example, detailed in Table 3.7. The spheres are given

a initial velo
ity of 5m/s in the x dire
tion. The simulation has been run for one se
-

ond. The simulation results are plotted together with the analyti
al solution in �g. 3.31.

Only one numeri
al solution was in
luded in the plot of �g. 3.31 sin
e the di�eren
e

between meshes turned to be negligible. In table 3.8 the values of the displa
ement (x),

velo
ity (v) and angular velo
ity (ω) at the end of the simulation (t = 1) are presented.
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Figure 3.31: Numeri
al results of the displa
ement and velo
ity in X with the angular

velo
ity in Z 
ompared against the theoreti
al solution

Table 3.8: Results at the end of the simulation

Quadrilateral Triangle Analyti
al

x(m) 3.9021 3.9022 3.9182

Error(%) 0.4102 0.4071 -

v(m/s) 3.5410 3.5410 3.5714

Error. (%) 0.8528 0.8528 -

ω(rad/s) −11.9788 −11.9788 −11.9048

Error. (%) 0.0062 0.0062 -

This example shows how the results on the DE pra
ti
ally independent on the boundary

mesh sele
ted. On the other side, for the simulation performed, the numeri
al results

agreed perfe
tly with the theoreti
al solution. This 
ase does not show any noti
e-

able dis
ontinuity in the normal and tangential 
onta
t for
es in the transition between

boundary FEs even without using the spe
ial implementation des
ribed in se
tion 3.5.2.
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3.6.5 Bra
histo
hrone

A good ben
hmark to 
he
k how well does the 
onta
t algorithm perform is the simu-

lation of a sphere sliding without fri
tion in a 
urve whi
h solution 
an be determined

analyti
ally. A 
ase of spe
ial interest is the 
y
loid whi
h is has the following properties:

• Bra
histo
hrone: It is the fastest path that goes from point A to B sliding under

the a
tion of 
onstant gravity.

• Tauto
hrone: The time taken by an obje
t sliding without fri
tion under 
on-

stant gravity to its lowest point is independent to the starting point.

Following a example is shown where two sphere slides on a 
y
loid 
urve with two lanes.

The 
urve goes from the point A = [0, 0]m to point B = [0.2,−0.1]m. One of the par-

ti
les is set at the top of the 
urve while the se
ond one starts from a lower position as

displayed in �gure 3.32. The simulation parameters are summarized in the table 3.9.

(a) Example set-up (b) 3D view of the mesh

Figure 3.32: Bra
histo
hrone example set-up

The 
y
loid has the following parametri
 equations:

x(s) = r(s− sin s) (3.31a)

y(s) = r(1− cos s) (3.31b)
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And the travel time is:

t(s) =
1√
2g

∫ sf

s0

√

(

∂x(t)
∂t

)2

+
(

∂y(t)
∂t

)2

√

y(t)
dt =

√

r

g
s (3.32)

Table 3.9: Simulation parameters

Material properties Cal
ulation parameters

Radius (m) 0.01 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3
) 2500 Gravity (m/s2) [0.0,−9.81, 0.0]

Fri
tion 
oe�. DE-FE 0.0 Time step (s) 1 · 10−5

Young's modulus (Pa) 1 ·107 Neighbour sear
h freq. 1

Poisson's ratio 0.2

Restitution 
oe�

∗
. 0.0

∗
Damping was applied to the normal 
onta
t to avoid os
illations of the 
onta
t point.

For the present example the parametri
 values yield: s0 = 0, sf = 3.5084 and r =

0.05172. The numeri
al solution 
ompares well against the expe
ted results as shown

in the following table 3.10. The small error found may 
ome, among other 
ause, from

the dis
retization of the 
y
loid 
urve into �nite elements and also due to measurement

and set-up of the problem.

Table 3.10: Results

Time to bottom Time to end

Higher parti
le 0.2198 s Higher parti
le 0.2516 s
Lower parti
le 0.2183 s Analyti
al result 0.2547 s
Error 0.68% Error 1.22%



Chapter 4
Combined DE-FE Method for

parti
le-stru
ture intera
tion

The intera
tion of granular materials and stru
tures is present in many industrial ap-

pli
ations. Some examples in whi
h the intera
tion takes pla
e have been listed in the

introdu
tion: silo �ow [59, 150℄, s
rew-
onveyors [99, 100℄, vibrated beds [4, 21℄, ball

mill pro
esses [56, 84℄, et
. On the one hand, the DEM has proved to be an e�
ient

method to 
apture the dis
ontinuous nature of the granular media involved in all those

pro
esses. On the other hand, the employment of the FEM to simulate the stru
tures

involved in those industrial appli
ations 
an provide better understanding of the prob-

lem and, therefore, 
ould play an important role in the pro
ess of design optimization.

Examples of appli
ation �elds in whi
h the 
ombined DE-FE 
oupling has been already

su

essfully employed in
lude: ro
k 
utting [95℄, soil-tyre intera
tion problems [49, 91℄,

soil-stru
ture [26, 136℄, shot peening pro
esses [43, 90℄, impa
ts with �exible barriers

[67℄, et
.

This 
hapter introdu
es a 
oupling pro
edure whi
h allows the simulation of problems

involving deformable stru
tures intera
ting with parti
les through me
hani
al 
onta
t.

Di�erently from the problem of parti
les 
onta
ting rigid boundaries, the 
onta
t with

deformable stru
tures 
al
ulated with FE, requires the appli
ation of more advan
ed


onta
t models as it will be appointed along the 
hapter.
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4.1 Coupling pro
edure

The 
omputation of the 
oupled DE-FE problem is divided in the two domains. The

DEs see the surfa
e elements of the FE domain as moving boundaries. In this sense the

position of those boundaries at ea
h time step su�
es to 
al
ulate the DE method in

the same way as it has been detailed in 
hapters 2 and 3. On the other hand, the FE

problem needs the introdu
tion of the 
onta
t for
es as nodal for
es in order to solve

the 
lassi
al problem of solid me
hani
s des
ribed in se
tion 4.2. The pro
edure of how

to transfer DE 
onta
t for
es onto FE nodal for
es will be des
ribed in se
tion 4.3.1.

The basi
 steps of the 
ombined or 
oupled DE-FE pro
edure for the parti
le-stru
ture

problem adapts very well to that of the dis
rete elements (�gure 2.1) with the following

details:

1. Conta
t Dete
tion: In
ludes the DE/DE dete
tion as well as the DE-FE 
onta
t

dete
tion detailed in 
hapter 3.

2. Evaluation of For
es: On the DE side, the for
es to 
onsider are the same, plus

the 
onta
t for
es 
oming from the DE-FE intera
tion. On the FE side, the DE-

FE 
onta
t for
es 
ontribute to the external for
es involved in the solid me
hani
s

problem to be solved (se
tion 4.2).

3. Integration of Motion: Ea
h problem, DEM and FEM, is solved in parallel

normally using the same time integration s
heme and time step. This is dis
ussed

in se
tion 4.4.

4.2 Nonlinear FEM for Solid Me
hani
s

The purpose of this se
tion is to brie�y introdu
e the basi
 
on
epts 
on
erning the

theory of the �nite element solution to the solid me
hani
s problems that will be used

along the 
hapter. The formulation used is the one presented in the book Nonlinear

Finite Elements for Continua and Stru
tures from T. Belyts
hko [10℄. Further referen
es

on this topi
 are [9, 19, 22, 129, 142, 151℄.
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4.2.1 Kinemati
s

A 
ontinuum medium is assumed to be formed by an in�nite amount of parti
les (ma-

terial points) whi
h have di�erent position in the physi
al spa
e during its movement

along time. Consider a body at the initial time t = 0, the initial 
on�guration Ω0 is

then, the set of positions that the material points o

upy in the spa
e. Similarly, the

spatial or deformed 
on�guration Ωt is de�ned by the positions of the body at a spe
i�


time t > 0 (�g. 4.1).

Figure 4.1: Initial and deformed 
on�gurations of a body

The ve
tor de�ning the position of a parti
le P in the referen
e 
on�guration, X, is

de�ned in the orthonormal base e of an inertial frame as:

X = X1e1 +X2e2 +X3e3 (4.1)

while the position ve
tor in the spatial 
on�guration is expressed in the same base as:

x = x1e1 + x2e2 + x3e3 (4.2)

The motion of the body is des
ribed by the fun
tion φ(X, t) that maps ea
h parti
le P

labelled by X to its 
urrent position x at time t:

x = φ(X, t) with X = φ(X, 0) (4.3)

The inverse map is also de�ned:

X = φ−1(x, t) (4.4)
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The des
ription of any quantity ̺ of the parti
les in the 
ontinuum 
an be done either

in the Lagrangian (material) des
ription, where the evolution over time of the quantity

̺(X, t) is studied following a �xed material point X, or in the Eulerian (spatial) de-

s
ription, where ̺(x, t) des
ribes the evolution over time of the quantity at a �xed point

of the spa
e x. The dependen
e on X or x in the quantities will be dropped for brevity.

The displa
ement of a material point its given by the di�eren
e between the its 
urrent

position and its original position:

u := φ(X, t)− φ(X, 0) = x−X (4.5)

and the velo
ity and a

eleration are the �rst and se
ond material time derivatives

1

of

the position.

v :=
∂φ(X, t)

∂t
=

∂u(X, t)

∂t
= u̇ (4.6a)

a :=
∂v(X, t)

∂t
=

∂2φ(X, t)

∂2t
=

∂2
u(X, t)

∂2t
= ü (4.6b)

Measure of strain

The deformation gradient is de�ned as:

F :=
∂φ(X, t)

∂X
=

∂x

∂X
= x⊗∇0 (4.7)

being ∇ :=
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

]T

and ∇0 :=
[

∂
∂X1

, ∂
∂X2

, ∂
∂X3

]T

. Tensor F 
an be interpreted

as the operation that transforms a given in�nitesimal segment line dX in the initial


on�guration to its 
ounterpart dx in the deformed 
on�guration:

dx = F · dX (4.8)

The determinant of F is 
alled the Ja
obian of the transformation and is denoted by

J .

J = det(F ) (4.9)

1

Material time derivative 
entred in a material point X reads:

d̺(X,t)
dt = ∂̺(X,t)

∂t whereas, when


entred on a spatial point x, it reads:
d̺(x,t)

dt = ∂̺(x,t)
∂t + v(x, t) · ∇̺(x, t)
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Introdu
ing the displa
ement gradient H := ∂u/∂X the following relation arises:

F = 1+H (4.10)

The theorem of polar de
omposition states that for a given se
ond order tensor F

with positive determinant detF > 0 exists an orthogonal tensor R and two symmetri


tensors U and V su
h that:

F = R ·U = V ·R (4.11)

Exploiting this property, the right Cau
hy Green tensor 
an be de�ned as a measure

that is invariant of a rotation R:

C := F T · F = U ·RT ·R ·U = U 2
(4.12)

where the orthogonality of R has been applied (RT ·R = 1).

Let's analyse now the 
ase of rigid body motion (no stret
h) whi
h 
onsists on a rotation


omposed by a translation, i.e x = R ·X + xt. The deformation gradient F a

ording

to equation 4.7 is F = R and therefore the right Cau
hy Green (eq. 4.12) yields

C = RT · R = 1. Sin
e a meaningful strain tensor should vanish under rigid body

motions, where no stret
hes and therefore no strains appear, the Green-Lagrange strain

tensor is introdu
ed:

E :=
1

2
(F T · F − 1) =

1

2
(C − 1) (4.13)

Where the fa
tor 1/2 is added for the 
ompatibility with the small deformation theory.

The Green Lagrange tensor expressed in terms of the displa
ement gradient (eq. 4.10):

E :=
1

2
(H +HT +HT ·H) (4.14)

The small theory tensor is re
overed by negle
ting the se
ond order terms in equation

4.14:

ǫ :=
1

2
(H +HT ) =

1

2
(u⊗∇0 +∇0 ⊗ u) (4.15)
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Measure of stress

The for
es a
ting in a body 
an be summarized as: body for
es b, for
es per unit mass in

the body domain Ω; and surfa
e tra
tions t, for
es per unit area a
ting on the boundary

Γ (�gure 4.2):

F(t) =

∫

Ω

ρ b(x, t) dΩ+

∫

Γ

t(x, t) dΓ (4.16)

Figure 4.2: For
es a
ting on a body

The Cau
hy's stress theorem relates the tra
tions t to a stress measure σ, denoted

Cau
hy stress, proje
ted in the unit normal n of the di�erential surfa
e dΓ:

n · σ dΓ = t dΓ = dF (4.17)

The 
ounterpart of equation 4.17 in the referen
e 
on�guration Ω0 impli
itly de�nes

the nominal stress P :

n0 · P dΓ0 = t0 dΓ0 = dF0 (4.18)

And the Se
ond Piola-Kir
hho� stress S is de�ned:

n0 · S dΓ0 = F−1 · t0 dΓ0 (4.19)
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4.2.2 Conservation equations

The basi
 equations that have to be satis�ed by every physi
al system in the 
ontinuum

me
hani
s theory are:

1. Conservation of mass

2. Conservation of linear momentum

3. Conservation of angular momentum

4. Conservation of energy

Conservation of mass

The mass m of a material domain Ω is an extensive property given by:

m =

∫

Ω

ρ(X, t) dΩ (4.20)

The prin
iple of 
onservation of mass reads: "the mass 
ontained in a 
ontinuum (and

in any material domain) is always the same".

This 
ondition translates mathemati
ally in:

dm

d t
=

d

d t

∫

Ω

ρ(X, t) dΩ = 0 (4.21)

The material time derivative of an integral is solved applying the Reynolds theorem:

d

d t

∫

Ω

f dΩ =

∫

Ω

(

d f

d t
+ f∇ · v

)

dΩ =

∫

Ω

(

∂f

∂ t
+∇ · (vf)

)

dΩ (4.22)

Equation 4.21 is then written as:

∫

Ω

(

d ρ(X, t)

d t
+ ρ(X, t)∇ · v

)

dΩ = 0 (4.23)

The lo
alitzation prin
iple in 
ontinuum me
hani
s allows 
onverting an integral ex-

pression into a di�erential expression:

d ρ(X, t)

d t
+ ρ(X, t)∇ · v = 0 (4.24)
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Conservation of linear momentum

The linear momentum balan
e prin
iple states: "the resultant of all the for
es a
ting on

a material volume in a 
ontinuum medium is equal to the rate of 
hange in its linear

momentum".

This 
an be expressed 
ombining equation 2.85a with equation 4.16:

d

d t

∫

Ω

ρv dΩ =

∫

Ω

ρ b(x, t) dΩ+

∫

Γ

t(x, t) dΓ (4.25)

On the left hand side of the equation the Reynolds theorem is dire
tly applied (eq.

4.22) together with the 
onservation of mass (eq. 4.24) yielding:

d

d t

∫

Ω

ρv dΩ =

∫

Ω

[

ρ
dv

d t
+ v

(

d ρ

d t
+ ρ∇ · v

)]

dΩ =

∫

Ω

ρ
dv

d t
dΩ (4.26)

The se
ond term of the right hand side is 
onverted into a volume integral in two steps:

First, the Cau
hy relation (equation 4.17) is invoked and then, the Gauss divergen
e

theorem is applied:

∫

Γ

t(x, t) dΓ =

∫

Γ

n · σ dΓ =

∫

Ω

∇ · σ dΩ (4.27)

Substituting eq. 4.26 and eq. 4.27 into eq. 4.25:

∫

Ω

(

ρ
dv

dt
− ρb−∇ · σ

)

dΩ = 0 (4.28)

and �nally, the di�erential form is:

ρ(ü− b)−∇ · σ = 0 (4.29)

Conservation of angular momentum

The angular momentum 
onservation implies that "the 
hange in time of angular mo-

mentum with respe
t to a point is equal to the sum of all torques steaming from external

volume and surfa
e for
es with respe
t to that point".

The 
orresponding equation based on an arbitrary point O reads:
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TO =

∫

Ω

rO × ρv dΩ (4.30)

It 
an be proved [10℄ that the impli
ations of this balan
e prin
iple leads to the state-

ment that the stress tensor σ is symmetri
:

σT = σ (4.31)

Conservation of energy

The prin
iple of energy 
onservation reads: "the rate of 
hange of total energy in a body

is equal to the work done by the body for
es and surfa
e tra
tions plus the heat energy

delivered to the body by the heat �ux and other heat sour
es".

The energy balan
e has the following terms:

W int +W kin = W ext +W heat

(4.32)

Where W int

is the 
hange of internal energy, W kin

the rate of 
hange of kineti
 energy,

W ext

is the power exerted by the body and surfa
e for
es and �nally W heat

is the power

supplied by the heat sour
es. In this thesis the problem is simpli�ed and the thermal

e�e
ts are negle
ted yielding the following expression:

d

dt

∫

Ωt

ρwint dΩ+
d

dt

∫

Ωt

1

2
ρv · v dΩ =

∫

Ωt

v · ρb dΩ +

∫

Γt

v · t dΓ (4.33)

In the 
ase of a pure me
hani
al problem the solution is a
hieved without the employ-

ment of this equation. The expression will be useful, however, as a measure of energy

in se
tion 4.4.2.

4.2.3 Constitutive models

The 
onstitutive models de�ne the material behaviour through relations that typi
ally

link the strains to the stresses. The models employed in the framework of this thesis

are large deformation linear elasti
ity, hyper-elasti
 models and J2 plasti
ity.
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Linear elasti
ity

The extension of linear elasti
ity to large deformation framework is by means of the so-


alled Kir
ho� material 
onstitutive model. It applies to problems with large rotations

but small deformations.

The relationship between strain and stresses is linear through the fourth-order 
onsti-

tutive elasti
 tensor C:

S = C : E (4.34)

where C(E, ν) depends only on the Young's modulus E and the Poisson's ratio ν whi
h

are the elasti
 properties of the material. The strain energy per volume for the linear

elasti
 
ase is given by:

w

int =
1

2
E : C : E (4.35)

Hyper-elasti
ity

Hyper-elasti
 materials are 
hara
terized by the existen
e of a strain energy fun
tion

that is a potential for the stress:

S = 2
∂w(C)

∂C
(4.36)

A 
onsequen
e of the existen
e of a stored energy fun
tion is that the work done on a

hyper-elasti
 material is independent of the deformation path. The work done by the

internal for
es is dire
tly given by the potential of energy de�ning the model. In the


ase of a Neo-Hookean material:

w

int =
1

2
λ(ln J)2 − µ lnJ +

1

2
µ(trC − 3) (4.37)

where λ and µ are the Lamé 
onstants de�ned by:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(4.38)
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The stresses expressed in the Se
ond Piola-Kir
hho�S and the Cau
hy stress σ measure

respe
tively read:

S = λ lnJ C−1 + µ (1−C−1) (4.39a)

σ = λ J−1 ln J 1+ µ J−1 (b− 1) where b = FF T
(4.39b)

Further details in [10, 13, 22, 142℄.

J2 Plasti
ity

The theory of plasti
ity pursues to model materials whi
h exhibit permanent strains

(plasti
 deformation) upon unloading. The model used in this work is the J2 hyper-

elasti
 plasti
ity model. The model introdu
es a split of the strains in its elasti
 and

plasti
 part in a multipli
ative manner:

F = F e · F p
(4.40)

The elasti
 part is modelled with an hyper-elasti
 model as previously introdu
ed. The

plasti
 deformations a

umulate when a 
ertain threshold in stresses is overpassed whi
h

is modelled by a yield surfa
e:

f(S, q) = σc − σY (ǫ) = 0 (4.41)

In the above, σY is the yield stress whi
h is a material parameter. On the other hand

σc is the measure of stress used 
he
k whether the material is inside the yield surfa
e

(elasti
 regime) or outside (plasti
 regime). In the �rst 
ase, no plasti
 deformation is

a

umulated. In the latter 
ase, a return mapping to the admissible region is needed.

The measure is de�ned based on the von misses 
riterion:

σc =

√

3

2
J2 =

√

3

2
σdev : σdev

(4.42)

The measure of stress and also the internal variables 
ontrolling the evolution of the

yield surfa
e and the possible modi�
ation of the elasti
 behaviour (hardening) are

driven by fun
tions whi
h depend on the deviatori
 stresses: σdev := σ− 1
3
(tr(σ)1). For

further details on this model see [10, 75, 114℄.
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4.2.4 Finite Element dis
retization

The equations governing the problem of the motion of a 
ontinuous body o

upying a

domain Ωt at time t under me
hani
al for
es are:

ρ(ü− b)−∇ · σ = 0 ∀x ∈ Ωt (4.43a)

n · σ = t̂ ∀x ∈ Γtσ (4.43b)

u = û ∀x ∈ Γtu (4.43
)

u(t = 0) = u0, u̇(t = 0) = v0 ∀x ∈ Ω0 (4.43d)

Γtu is where the solution presents some pres
ribed values û known as Diri
hlet bound-

ary 
onditions, whereas Γtσ is the part of the boundary where the so-
alled Neumann

boundary 
onditions, i.e. pres
ribed tra
tions t̂, are applied. u0 and v0 are the initial

states of the displa
ement and its �rst derivative. These equations together with the


onstitutive model of the material (se
tion 4.2.3) and the kinemati
 relations (se
tion

4.2.1) 
onstitute the statement of an initial boundary value problem. The analyti
al

solution of the problem for the unknown u(x, t) 
an not be obtained in general and


ommonly an approximate numeri
al solution is sought by appli
ation of the Finite El-

ement Method. The purpose of this se
tion is to highlight the basi
 expressions that

yield to the FEM solution. Dedi
ated texts [9, 10, 151℄ should be addressed for a more


omprehensive understanding of the topi
.

The weak form

The set of equations 4.43 
onstitute the so-
alled strong form of the problem. The FEM

solution is based on the weak form of the problem whi
h is gained by the integration of

the momentum equation multiplied by a test fun
tion in the form of virtual displa
ement

δu su
h that vanishes on the Diri
hlet boundary Γtu:

∫

Ωt

([ρ(ü− b)−∇ · σ] · δu) dΩt = 0 ∀x ∈ Ωt (4.44a)

δu = 0 ∀x ∈ Γtu (4.44b)

After integrating by parts and applying the Gauss divergen
e theorem (eq. 4.27), the
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Cau
hy's stress theorem (eq. 4.17), the Neumann boundary 
ondition (eq. 4.43b) and

the kinemati
al admissibility of the virtual displa
ement (eq. 4.44b), the weak form of

the equilibrium is obtained:

∫

Ωt

ρü · δu dΩt +

∫

Ωt

σ : (δu⊗∇) dΩt =

∫

Ωt

ρb · δu dΩt +

∫

Γt

t̂ δu dΓt (4.45)

Dis
rete form

The 
urrent domain Ωt is subdivided into elements Ωe so that Ωe ≈ ∪ne

e=1Ωe. The nodal


oordinates of the elements are denoted xI where I ∈ [1, nN ]. In the �nite element

method, the motion u(x, t) is approximated by:

u
h(x, t) =

nN
∑

I=1

NI(x)uI(t) (4.46)

where NI(x) are the shape fun
tions that interpolate the solution on the dis
retized

�eld from the values at the nodes uI . The shape fun
tions must ful�ll the partition of

unity at any point x, i.e,
∑nN

I=1NI(x) = 1. In this work, the 4-nodded tetrahedra and

the 8-nodded hexahedra displa
ement elements are used.

The velo
ities and a

elerations are obtained by taking the �rst and se
ond material

time derivative of the displa
ements, giving:

u̇
h(x, t) =

nN
∑

I=1

NI(x)u̇I(t) (4.47a)

ü
h(x, t) =

nN
∑

I=1

NI(x)üI(t) (4.47b)

The Galerkin solution employs the same shape fun
tions to the approximation of the

virtual displa
ements:

δuh(x, t) =

nN
∑

I=1

NI(x)δuI(t) (4.48)

By inserting the approximation fun
tions into the weak form we obtain a dis
rete prob-

lem:
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nN
∑

I=1

δuT
I

[
∫

Ωt

ρühNI dΩt +

∫

Ωt

B
T
I σ dΩt −

∫

Ωt

ρbNI dΩt −
∫

Γt

t̂NI dΓt

]

= 0 (4.49)

where the matrix BI in
ludes all the spatial derivatives of the interpolation fun
tions

NI . Sin
e the virtual displa
ement introdu
ed is arbitrary, equation 4.49 has to be

ful�lled for arbitrary nodal values δuI . Therefore, ea
h term in bra
kets has to vanish

separately yielding a set of nN non-linear di�erential equations that 
an be expressed in

matrix form:

Mü+ f
int = f

ext
(4.50)

Where M is known as mass matrix, f
int

is the ve
tor of internal for
es and f
ext

the

ve
tor of external loads. ü is the ve
tor 
ontaining all nodal a

elerations. The integrals

in equation 4.49 are split into sums of integrals over ea
h element Ωe, whi
h are usually

evaluated by means of a Gauss integration rule.

4.3 DE-FE Conta
t

The two domains, FEM and DEM, are 
al
ulated separately and their 
ommuni
ation is

through 
onta
t for
es. The �nite element mesh represents a moving boundary for the

parti
les; on
e a 
onta
t is dete
ted, i.e., there is some interpenetration between a parti-


le and a �nite element, the penalty method determines the 
onta
t for
es on the "DEM

side" that will be later transmitted to the "FE side". An alternative to this approa
h is,

for instan
e, the so 
alled pinball method [11℄ whi
h embeds spheri
al parti
les onto the

surfa
e FEs in order to dire
tly dete
t and 
hara
terize the 
onta
ts in a DE/DE fashion.

In this work, the Double Hierar
hy Method (se
tion 3) is used as a 
ollision dete
tion

method whi
h 
hara
terizes and 
learly de�nes how to evaluate the for
es in a wide

range of situations involving spheri
al parti
les and planar triangles or quadrilaterals.

In a mesh �ne enough it would be possible to simulate the lo
al deformation of the

solids by simply applying a relatively high penalty parameter. However, that s
ale 
an

not be simulated in general, due to the amount of elements required for a single 
onta
t.
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Therefore the lo
al deformations of the parti
le and solid involved in the 
onta
t will

be modelled with the 
onta
t model instead. The details on the 
onta
t laws to be

used were des
ribed in se
tion 2.5.3. The 
onta
t model sele
ted for the examples is the

HM+D model.

The external for
es that a
t on a solid, as des
ribed in se
tion 4.2.1, are 
omposed by

body for
es b(x) and surfa
e tra
tions t(x). The part of the surfa
e tra
tions whi
h


ome from the intera
tion with the parti
les through 
onta
t are determined by means

of the DE method. In a se
ond step they are 
ommuni
ated from the DEs to the FE

nodes. Two di�erent methods regarding the 
ommuni
ation of for
es are des
ribed in

this 
hapter: the dire
t interpolation method (se
tion 4.3.1) and the Area Distributed

Method or shorter, ADM (se
tion 4.3.3) whi
h has been spe
ially developed to over
ome

the problems that the dire
t interpolation method presents, des
ribed in se
tion 4.3.2.

4.3.1 Dire
t interpolation

The idea is developed for the illustrative 
ase of a �at 2D surfa
e where, for sake of


larity, the tra
tions will be identi�ed by a s
alar normal pressure p(x) (�gure 4.3). The

notation for the domain of the surfa
e elements will be Ωe.

Figure 4.3: Area of 
onta
t and pressure of a sphere in 
onta
t with two FEs

Virtual work equilibrium is established between the evaluated 
onta
t pressure and the

interpolated for
es on the FE nodes.
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δW int = δW ext
(4.51a)

nN
∑

i=1

Fi δui =

∫

Ω

p(x) δu(x) dΩ (4.51b)

We assume that the normal virtual displa
ement �eld δu(x) is approximated in the

spa
e of the FE dis
retization δuh(x) ≈
nN
∑

i=1

Ni(x) δui while we let the pressure p(x) be

a analyti
al s
alar dis
ontinuous fun
tion that will not be interpolated by the FEs:

nN
∑

i=1

Fi δui =

∫

Ω

p(x)

nN
∑

i=1

Ni(x) δui dΩ (4.52)

Now, an expression for every single node in the FE mesh 
an be obtained:

Fi =

∫

Ω

p(x)Ni(x) dΩ (4.53)

The integral over the whole domain 
an be split into the di�erent �nite elements:

Fi =
ne
∑

e=1

∫

Ωe

p(x)Ni(x) dΩ (4.54)

For the parti
ular 
ase of assuming 
on
entrated for
es Fp at one point xPc, the pressure


an be expressed as a Dira
 delta fun
tion, as the work of Mi
hel [80℄ des
ribes:

p(x) = Fp · δD(x− xPc) (4.55)

Plugging this into equation 4.54 yields:

Fi =
ne
∑

e=1

∫

Ωe

Fp · δD(x− xPc) ·Ni(x) dΩ (4.56)

Sin
e the integrand of the Dira
 delta is only non-zero in xPc, the integral will vanish

in all the elements ex
ept for the one in whi
h the point of 
onta
t xPc is lo
ated.

This is the 
ase of the element labelled

e©1
in �gure 4.3. Di�erently, the integral in
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the element labelled

e©2
is zero regardless of the fa
t that it has interse
tion with the

parti
le. Equation 4.56 translates into:

Fi = Ni(xPc) · Fp (4.57)

Figure 4.4: Point for
e and the area dis
riminants de�ning the triangle's shape fun
tions

This yields to the dire
t interpolation approa
h presented by the early works of Horner

[49℄ in whi
h the external for
es due to 
onta
t on ea
h node are simply determined by

the respe
tive nodal shape fun
tion weights (se
tion 3.4.1) times the evaluated point

for
e Fp. This solution ensures the equilibrium of for
es and torques with respe
t to any

point. The simple 
ase of a linear triangle is depi
ted in �gure 4.4.

Nakashima and Oida [91℄ in simulations of soil-tire intera
tion, Mi
hael [80℄ for snow-

tire and Oñate and Rojek [95℄ in ro
k-tool intera
tion are some of the authors whi
h

have also adopted this method for the 
ommuni
ation of the 
onta
t for
es involving de-

formable stru
tures. However, as next se
tion 4.3.2 reviews, this method does not meet

the requirements of Hertz-Mindlin theory in regions of 
onta
t whi
h are non smooth

and they 
an lead to instabilities. Even if the evaluation of the for
es is well determined

on the "DE side", the fa
t that it 
on
entrates the 
onta
t for
e in one point is a 
lear

disadvantage in terms of a

ura
y on the "FE side".

Having said that, the dire
t interpolation of for
es using the H2
method (or any of the

reviewed methods in se
tion 3.1) 
an still be reasonable in 
ases where the size of the

DEs is relatively small 
ompared to the size of the deformable FEs and the penetration is

negligible 
ompared to the DEs radius, i.e., assuming small deformations (�gure 4.5(b)).
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(a) A spheri
al parti
le 
olliding several FE (b) Many small parti
les 
olliding large FEs

Figure 4.5: Situations with di�erent relative size ratio DE-FE

In general, situations where detailed FE analysis of strain and stress is 
ondu
ted or

simply when the 
onta
t is to be 
orre
tly determined, more a

urate s
hemes should

be used. Han et al. [44, 45℄, Munjiza [86℄, Wellmann [136℄, among others, present some

algorithms to that end. In this dissertation a new method is proposed whi
h is based

on the distribution of the 
onta
t for
es determined on the "DE side" to all the FE

involved in the 
onta
t. The method will be denoted Area Distributed Method and is

presented in se
tion 4.3.3.

4.3.2 Non-smooth 
onta
t

The HM+D is based on the Hertz-Mindlin theory [47, 81℄ whi
h is developed for 
ase

of 
onta
t of bodies that present smooth surfa
es with a unique normal. Contrarily, In

the DE-FE 
onta
t, plenty of non-smooth regions are en
ountered. The appli
ation of

these type of 
onta
t laws simply represents an heuristi
 model whi
h tries to satisfy

some basi
 
onditions as it was des
ribed in se
tion 3.4, namely, 
onservation of energy

and avoidan
e of for
e dis
ontinuities. Some of the situations that 
an result in non-


omplian
e of the above are the following:

• Arti�
ial introdu
tion of boundaries: Imagine the parti
le in �gure 4.6 sliding

from one FE to the next one. Sin
e the 
onta
t method allows the introdu
tion

of 
ertain interpenetration, the edge 
onne
ting elements 1 and 2 would suppose

a barrier if no additional assumptions are made. This problem is solved by the

simple introdu
tion of the hierar
hy between entities (se
tion 3.4.1).
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Figure 4.6: Parti
le moving a
ross two quadrilateral elements

• Dis
ontinuity in tangential for
e: Similarly to the previous example, when

a parti
le 
rosses from one element to the next, the tangential for
es should be


orre
tly transmitted, sin
e they are normally 
al
ulated in a in
remental manner.

In se
tion 3.5.2 a spe
ial implementation that solves this problem is given.

• Multi-
onta
t: Figure 4.7 shows two dis
retizations of the same situation whi
h

should yield the same result. To do so, an elimination pro
edure should determine

properly whi
h are the entities to be ignored and whi
h are the relevant ones. Dif-

ferently from the 
lassi
al hierar
hy based algorithms, the H2
method is 
apable

to distinguish 
orre
tly those situations as des
ribed in se
tion 3.4.2.

(a) Conta
t with planes dis
retized by many

small FEs

(b) Conta
t with planes dis
retized with one

quadrilateral element

Figure 4.7: Parti
le 
olliding two boundaries with di�erent FE dis
retizations
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• Non-smooth evolution of normal for
es: A deformable solid under 
onta
t

will evolve in time resulting in di�erent 
onta
t status. Figure 4.8 depi
ts a 
ase

in whi
h the 
lassi
al DE-FE methods (in
luding H2
) will determine one 
onta
t

for
e (F
t1 = f(kn, δ) · n) in the �rst situation, but two 
onta
t for
es of similar

magnitude (F
t2 = f(kn, δ1) · n1 + f(kn, δ2) · n2)) in the se
ond situation, leading

to a sudden in
rease of the for
e.

(a) Conta
t at a time t1 (b) Conta
t at a time t2 > t1

Figure 4.8: Parti
le 
olliding a plane of a deformable body

The H2
method has been spe
ially devised to give a simple and robust solution to

the above-mentioned problems in 
ase of 
onta
t with rigid stru
tures. In the 
ase of

deformable stru
tures, however, the problem of the non-smooth evolution of the normal

for
es takes spe
ial importan
e and it may yield to instabilities in the 
al
ulation of the

solid. To over
ome this problem the Distributed Area Method is introdu
ed next.

4.3.3 Area Distributed Method

An improvement to the dire
t interpolation is suggested here whi
h tries to give bet-

ter quantitative results to the overall 
onta
t simulation involving parti
les simulated

by DE and stru
tures or solids 
al
ulated with FE and the problems that the dire
t

interpolation method presents. The basi
 idea of the method is developed followed by

examples whi
h prove its superiority against the dire
t interpolation and validate the

pro
edure. The implementation details of the algorithm 
an be found in Appendix B.

Derivation of the method

The point of departure is equation 4.54, where instead of introdu
ing a point load, the

intera
tion for
es are left as a distributed pressure (�gure 4.9).
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Figure 4.9: Pressure fun
tion and 
entroid of the pressure on the interse
tion between

a DE and a FE

The 
entroid x̄
p
e of the 
onta
t region in a given element weighted by the pressure

distribution is determined as follows (�gure 4.9):

x̄
p
e =

∫

Ωe

p(x) · x dΩ

∫

Ωe

p(x) dΩ
(4.58)

If the position x is interpolated by the shape fun
tions, it is easy to see from equation

4.58 that the following holds:

∫

Ωe

p(x)Ni(x) dΩ =

∫

Ωe

p(x)Ni(x̄
p
e) dΩ (4.59)

Now plugging this ba
k to equation 4.54:

Fi =

ne
∑

e=1

Ni(x̄
p
e)

∫

Ωe

p(x) dΩ (4.60)

The for
es in a node Fi 
an be expressed as the 
ontribution of the for
es from every

element 
ontaining that node:

F e1
i + F e2

i + . . . = Ni(x̄
p
1)

∫

Ω1

p(x) dΩ+Ni(x̄
p
2)

∫

Ω2

p(x) dΩ+ . . . (4.61)

Finally, the partial nodal for
e 
ontribution from a given element is:

F e
i = Ni(x̄

p
e)

∫

Ωe

p(x) dΩ (4.62)
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The expression obtained 
an be regarded as a generalitzation of the dire
t interpolation

(equation 4.57). It suggests that the 
onta
t for
e 
ontribution from ea
h element should

be distributed among its nodes weighted up by the shape fun
tions Ni(x̄
e
p) evaluated on

the 
entroid of the pressure distribution on the element.

The expression for the pressure between two bodies in 
onta
t given by the Hertzian

theory [47℄ is:

p(r) = p0
√

1− (r/a)2 (4.63)

Where r is the distan
e from the 
entral point of 
onta
t, p0 the maximum pressure

and a the radius of the 
ir
ular 
onta
t area. Further details are given in Appendix A.

Integrals of the pressure fun
tion 
an be a
hieved with by numeri
al integration in

a mortar-like [102℄ fashion with a su�
ient number of integration points in order to


apture the interse
tion regions and its 
orresponding 
entroids su
h as the one depi
ted

in �gure 4.9. What is suggested here instead, is to approximate the pressure as a uniform

fun
tion (�gure 4.10) a
ting on the interse
tion surfa
e. The value of the pressure is

simply determined as the total for
e divided by the total interse
tion area ph = F/AT

ensuring that the total integral 
oin
ides with the one of the Hertzian theory.

Figure 4.10: Hertz pressure distribution and its uniform approximation

Equation 4.62 then simpli�es to:

F e
i = Ni(x̄

p
e)

∫

Ωe

p(x) dΩ ≈ Ni(x̄
p
e)

F

AT
Ap

e (4.64)

Ap
e are the interse
tion regions between the parti
le and the surfa
e elements and x̄

p
e are

their respe
tive 
entroids. Note that the 
ase of AT = πa2 happens only in 
ase of full
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planar interse
tion. In general, the real interse
tion area will be AT 6= πa2 and the way

to 
orre
tly determine it is AT =
∑ne

e=0A
p
e. Finally, the 
onta
t for
es are assembled

on the nodes a

ounting for the 
ontribution from every element 
ontaining the node in

question:

Fi =
∑

e

F e
i (4.65)

For the 
ase of linear triangles the interse
tion areas Ap
e and the 
entroids x̄

p
e 
an be

analyti
ally determined in an easy and 
heap way whi
h is detailed in Appendix C. The

extension of linear triangles to quadrilaterals or higher order elements is dis
ussed in

se
tion 4.3.3.

In a 
ase with multiple 
onta
ts happening at the same time, this pro
edure applies

to every group of elements that form part of an entity with valid 
onta
t. A system of

master elements and slave elements is determined using the H2
elimination pro
edure

(se
tion 3.4.2). The 
onta
t for
es evaluated on every master are distributed among

the slaves elements in fun
tion of their interse
tion areas (see �gure B.2). Additionally,

the for
es on every master are s
aled by the total amount of interse
tion area that the

parti
le presents with the di�erent FEs. This way the 
onta
t for
es evolve smoothly

in the same way as the total area does and thus, the dis
ontinuity problem presented

in se
tion 4.3.2 is solved. This pro
edure is fully des
ribed in Appendix B, dedi
ated to

the implementation of this method.

The validation of the Area Distribution Method and its 
omparison against the dire
t

interpolation is performed through several examples in se
tion 4.4.2 and se
tion 4.5.1.

Extension to other elements

The presented method determines the normal 
onta
t for
es based on the interpene-

tration of the bodies, δ and distributes it based on the 
al
ulation of the interse
tion

areas. This has been analyti
ally resolved for the 
ase of 4-nodded tetrahedra whi
h

results in surfa
es de�ned by linear triangles. In a general 
ase, with quadrati
 or higher

order elements, the analyti
al determination of the 
onta
t interse
tions be
omes more

involved.
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Figure 4.11: Determination of the 
onta
t point and normal in a non-planar surfa
e

Figure 4.11 shows the 
ase of a 4-nodded quadrilateral. nπ
is the normal at the pro-

je
tion point Cπm
to the 
urved surfa
e πm

de�ned by the element

e©m
. The surfa
e is

des
ribed by the 
onve
tive 
oordinates ξ and η. The 
onta
t proje
tion (
andidate to


onta
t point) is determined by the minimization of the distan
e [141℄:

Cπm := x(ξ, η) | min
x(ξ,η)

‖Ci − x(ξ, η)‖ (4.66)

This 
an be translated into the solution of the system following system:

C i − x(ξ, η)

‖C i − x(ξ, η)‖ · ∂x(ξ, η)
∂ξ

= 0 (4.67a)

C i − x(ξ, η)

‖C i − x(ξ, η)‖ · ∂x(ξ, η)
∂η

= 0 (4.67b)

(4.67
)

And the normal is:

n =
(∂x(ξ, η)/∂ξ)× (∂x(ξ, η)/∂η)

‖(∂x(ξ, η)/∂ξ)× (∂x(ξ, η)/∂η)‖ (4.68)

This requires the employment of a root-�nding te
hnique whi
h makes, in general, the

problem mu
h more expensive. In any 
ase, the analyti
al determination of the areas

be
omes impra
ti
al and numeri
al integration has to be employed. In order to avoid

this, an alternative is proposed here whi
h involves the subdivision of quadrilaterals, or
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any other super-linear elements, using linear triangles. Figure 4.12 shows the 
ase of

a 6-nodded triangle and a 4-nodded quadrilateral subdivided with six and four linear

triangles respe
tively. An extra interpolation node has been introdu
ed in the 
entroid

xcm of the original geometries to 
reate the sub-triangles.

Figure 4.12: Possible subdivision of a 6-nodded triangle and a 4-nodded quadrilateral

into 3-nodded linear triangles

The sub-triangles T m
α substitute their parent entities

e©m
during the determination of

the interse
tion areas and 
entroids. The total interse
tion area Ap
e and the interse
tion


entroid x̄
p
e are determined from the interse
tion areas and 
entroids of its sub-triangles

using the basi
 
omposition des
ribed in Appendix C through equation C.1. Afterwards,

the nodal for
es are interpolated to the original parent elements' nodes by means of

the shape fun
tions as des
ribed in equation 4.64. This is the pro
edure used for the

examples involving hexahedra in this work.

4.4 Time integration

Both impli
it and expli
it integration methods are widely used in 
omputational solid

me
hani
s. The 
hoi
e is strongly dependent on the type of simulation of interest. It

is highlighted in the book of Belyts
hko et al. [10℄ that an expli
it integration method

is advisable for dynami
 
onta
t problems where the high frequen
y response is the

matter of interest. This is the 
ase of the 
onta
t problem in whi
h the 
hara
teristi



ollision times are relatively small 
ompared to the simulation times. Furthermore, the

multiple 
ollisions of parti
les with a stru
ture happening along the simulation have to

be well 
aptured. Sin
e small time steps are required for the resolution of the 
onta
t

between DEs and FEs, good a

ura
y 
an be a
hieved using s
hemes that only perform
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one evaluation of for
es per time step and are 
heaper than higher order s
hemes or

impli
it s
hemes. The fa
t that no linearisation is needed is also a 
lear advantage as

previously dis
ussed for the DE integration in se
tion 2.6. Another important out
ome

of the use of an expli
it integration is the easier parallelization of the 
ode.

The implemented strategy is based on the expli
it pro
edure des
ribed in the book by

T. Belyts
hko [10℄ under the name of Central di�eren
e method. It is algorithmi
ally

identi
al with the Velo
ity Verlet s
heme des
ribed for the dis
rete element method

whi
h turned to have a very good balan
e between a

ura
y and 
omputational 
ost

with very low memory requirements. The full des
ription of the algorithm 
an be found

in se
tion 2.6. The update of nodal velo
ities and displa
ements needs the expli
it

determination of the a

elerations ü
n+1

from equation 4.50 whi
h is rewritten here for

the updated time step n+ 1:

Mü
n+1 = f

extn+1 − f
intn+1

(4.69)

This 
an be a

omplished without solving any system of equations provided the mass

matrix M is diagonal. Lumped mass matri
es will be used to a
hieve so. Then, the

solution goes node by node and evolves with di�erent evaluations of time. The assembly

is performed nodally a

ounting for the 
ontribution of the internal for
es and external

for
es whi
h are assembled element by element. The 
ase of the 
onta
t for
es due to

the intera
tion with the parti
les has been detailed in se
tion 4.3.3 (equation 4.65).

4.4.1 Expli
it s
heme 
riti
al time step

One of the notable disadvantages of expli
it integration s
hemes, as mentioned in se
-

tion 2.6, is their 
onditional stability. In a general situation, involving several parti
les

intera
ting with solids dis
retized by �nite elements, the time step should respe
t the


riterion determined in se
tion 2.6.4 regarding DE/DE and DE-FE intera
tion as well

as the stability limits of the integration of the solid me
hani
s problem itself.

Similarly as for the DEM, the stable time step in the 
entral di�eren
es s
heme 
an be

approximated by the highest frequen
y of the linearised system. For the 
ase of a mesh

of 
onstant strain elements with rate-independent materials it 
an be evaluated as:
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∆tcrit =
2

ωmax
≤ mine,k

2

ωe
k

= mine
le
ce

(4.70)

Where k is the 
oordinate index, le is a 
hara
teristi
 length of element, ce is the

wavespeed and α is a redu
tion fa
tor that takes into a

ount the non-linearities whi
h

destabilize the system; Belyts
hko [10℄ proposes a value ranging 0.8 ≤ α ≤ 0.98.

Rayleigh damping

The Rayleigh damping is the one implemented in the 
ode where the 
oupled DE-FE

pro
edure has been developed. The linear equations of motion for a damped system are:

Mü+Cu̇+Ku = f
ext

(4.71)

Where f
int

is expressed in fun
tion of a damping matrix C and a sti�ness matrixK (see

equation 4.50). A 
ommon 
hoi
e is to de�ne C as a linear 
ombination of M and K

so that the system 
an be diagonalized with the same eigenve
tors as the undamped 
ase.

C = a1M+ a2K (4.72)

a1 and a2 (also known as α and β in the literature) are input parameters that usually

are 
alibrated to obtain a desired fra
tion of the 
riti
al damping ξ. It 
an be 
al
ulated

element-wise as:

ξk =
a1
2ωk

+
a2ωk

2
(4.73)

The new 
riti
al time step 
an be derived in the same way as before for the new linear

system:

∆tcrit = maxk
2

ωk

(

√

ξ2k + 1− ξk

)

(4.74)
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4.4.2 Energy assessment

Unfortunately, there is not a well-de�ned methodology to a

urately predi
t the time

step needed to be used in a 
oupled DE-FE simulation. There are many fa
tors involved

su
h as the integration s
heme of ea
h of the methods, the 
hara
teristi
s of the simula-

tion, the 
onta
t models used, the 
onstitutive modelling of the materials, et
. On the

top of that, it has been shown for the DEM that the theoreti
al time stability of the

integration s
heme does not su�
e to ensure the overall stability (se
tion 2.6.4) and the


on
ept of Conta
t Resolution was employed.

On the other hand, it is 
ommon pra
ti
e to determine the sti�ness of the 
onta
t kn

as a merely numeri
al penalty whi
h enfor
es the impenetrability 
ondition not intend-

ing to model the dynami
s of the 
onta
t. In those 
ases, the penalty is often sele
ted

in fun
tion of the assumable time step. In this se
tion the use of an energy 
he
k is

proposed as a method to ensure the stability of the system from a global point of view.

If the time step is 
orre
tly sele
ted, the energy is expe
ted to be 
onstant along the

simulation (a

ounting for the dissipation terms); otherwise, if an in
rease of energy is

dete
ted, the stability is not ensured and the time step should be redu
ed.

The expression for the energy balan
e (4.33) 
an be used to derive a measure of energy

for the di�erent me
hanisms involved in the problem. Using an expli
it integration

s
heme, the amount of energy at every time step 
an be approximated assuming that

all quantities are 
onstant within a time step:

Eint

FE

=

∫

Ωt

ρ∆wint dΩ (4.75a)

Ekin

FE

=

∫

Ωt

1

2
ρv · v dΩ (4.75b)

Ebody

FE

=

∫

Ωt

u · ρb dΩ (4.75
)

where the supers
ripts denoting the time step have been omitted for 
larity. The work

done by the tra
tion for
es due to 
onta
t are not a

ounted on the FE side, instead

they are easily evaluated on the DE side as 
onta
t for
es with every master. Now the

expressions of the all the energy involved in a system of parti
les is detailed:
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Ekin

DE

=

nP
∑

i

(

1

2
mi ‖vi‖2 +

1

2
Ii ‖ω̇i‖2

)

(4.76a)

Ebody

DE

=

nP
∑

i

mi g
T
u (4.76b)

Where g is the gravity and Ii is the nodal inertia whi
h in 
ase of a sphere is a 
onstant

value for all referen
e frames. The elasti
 energy generated by the 
onta
ts will be

denoted E
ont

. It will be 
al
ulated for every parti
le p ∈ nP in the system a

ounting

for all DE 
onta
ts j ∈ nC,DE and every FE 
onta
t k ∈ nC, FE in the following way:

E
ont =

nP
∑

i

(

1

2

nC,DE
∑

j

(UDE + FDE +DDE) +

nC,FE
∑

k

(UFE + FDE +DDE)

)

(4.77a)

The fa
tor 1/2 in the parti
le 
onta
t summation 
omes from the fa
t that in a full

parti
le loop the 
onta
t between parti
les i and j will be a

ounted twi
e. On the

other hand, the energy 
ontribution 
oming from the 
onta
t between DEs and FEs will

be a

ounted just on the DE side, and therefore, the full energy has to be 
omputed.

The quantities U , F , D 
orrespond to the elasti
, fri
tional and dissipative energy terms

that are 
omputed depending on the 
onta
t model employed.

The 
omputation of the elasti
 energy is des
ribed here for the Hertzian 
onta
t law

(se
tion 2.5.2) whi
h 
an be applied to both DE/DE and DE-FE 
onta
t:

Un+1 = Un
n+1 + Ut

n +∆Ut
n+1

(4.78a)

Un+1
n =

∫ δn+1

0

Fn(δ) dδ (4.78b)

∆Ut
n+1 = ∆Fte ∆s (4.78
)

The tangential part is 
al
ulated in
rementally with the elasti
 tangential for
e in
re-

ment (equation 2.36) and the in
remental displa
ement (equation 2.31a). Di�erently,

the normal elasti
 for
e 
an be dire
tly evaluated by the integral expressed above sin
e

it is a 
onservative for
e:
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Un+1
nHertz

=

∫ δn+1

0

Fn(δ) dδ =
2

5
kn δ

2
(4.79)

where kn is was de�ned in equation 2.38a.

Finally, the global balan
e of energy reads:

Eint + Ekin = Eext + E0 (4.80a)

Eint

FE

+ Ekin

FE

+ Ekin

DE

= Ebody

FE

+ Ebody

DE

+ E
ont + E0 (4.80b)

Where E0 is an arbitrary initial energy.

4.5 Validation examples

The purpose of the following examples is to validate the des
ribed 
oupled pro
edure

together with the methodology developed for the 
ommuni
ation of for
es from DE to

FE in the Area Distributed Method.

4.5.1 Impa
t on simply supported beam

A parti
le-stru
ture intera
tion a
ademi
al example is presented here whi
h 
onsists on

a spheri
al parti
le 
olliding a simply supported beam (�gure 4.13). Two di�erent 
ases

are reprodu
ed here in order to assess the 
oupled DE-FE pro
edure. The referen
e

solution to this problem, earned from linear modal dynami
s, was proposed by Timo-

shenko in 1951 [126℄ and is reviewed in [78℄.

Two examples are reprodu
ed with the same parameters, in the �rst one the radius

is 0.01m and the length of the beam is 15.35m while the se
ond one has a parti
le of

0.02m of radius and a length of 30.70m for the beam. The material properties des
ribed

in [78℄ are summarized together with the simulation parameters in table 4.1. The �rst


ase produ
es a single impa
t while the se
ond yields to three of parti
le/beam impa
ts.

The meshes used are 60 × 4 × 3 8-nodded elements respe
tively for the length, height

and depth in the �rst example and 120× 4× 3 in the se
ond example.
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(a) Front view (b) Side view

Figure 4.13: Simply supported beam hit laterally at its 
entre by a sphere

Table 4.1: Simulation parameters

Material properties DE FE Cal
ulation parameters

Radius (m) 0.01/0.02 - Conta
t Law Hertzian

Density (kg/m3
) 7960 7960 DE-FE Model ADM

Young's modulus (GPa) 215.82 215.82 Initial vel. (DE) (m/s) [0.0,−0.01, 0.0]

Poisson's ratio 0.289 0.289 Gravity (m/s2) [0.0, 0.0, 0.0]

Restitution 
oe�. 1.0 - Time step (s) 1 · 10−8

Fri
tion 
oe�. DE-FE 0.0 - Neighbour sear
h freq. 50

The results (�gure 4.14) are quite satisfa
tory sin
e the HM+D model simply de�ned

by the material properties is able to perfe
tly reprodu
e the 
onta
t for
es. On
e the


onta
t �nishes, the beam os
illates in a 
ombination of di�erent ex
ited modes. The

largest frequen
y mode, whi
h 
an be easily identi�ed in the �gures, 
orresponds to the

natural frequen
y of the stru
ture and it is perfe
tly mat
hed. The higher vibration

modes however, are not 
orre
tly 
aptured by the linear hexahedra elements available

in the 
ode, whi
h are not the best suited elements to simulate �exural modes. As a


onsequen
e of that, there is a deviation on the se
ond and third 
onta
t events in the

se
ond example (�gure 4.14(b)).
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(a) Analyti
al solution versus the numeri
al ADM solution for the beam 1

(b) Analyti
al solution versus the numeri
al ADM solution for the beam 2

Figure 4.14: Results of the lateral impa
t of a sphere on a simply supported beam
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4.5.2 ADM vs Dire
t interpolation

A 
omparison is performed between the dire
t interpolation and the Area Distribution

Method using a 
oarser mesh of 10× 1× 1 hexahedra. The results for the 
onta
t for
e

predi
ted by the ADM (�gure 4.15) are 
onsiderably a

urate despite of the bad quality

of the mesh. The dire
t interpolation instead, yields to very ina

urate results, as it

predi
ts a sti�er 
onta
t due to 
onsideration of a 
onta
t for
e with two planes as 
an

be seen in �gure 4.16. The e�e
t of the sudden 
hange in normal for
e (se
tion 4.3.2)


an be 
learly seen in the results. It 
orresponds to the instant in whi
h the 
onta
t

de
te
tion goes from a 
onta
t with a single edge to a 
onta
t with two planes.
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Time step (ms)

0

1

2

3

4

5

6

7

8

9

D
is
p
l.
(µ
m
)

contact force ADM
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Figure 4.15: Analyti
al solution versus numeri
al solutions for the dire
t and the dis-

tributed methods in a 
oarse mesh

Figure 4.16: Displa
ement at t = 0.12ms (deformation ×2000)
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4.5.3 Energy in a single DE-FE 
ollision

The two methods for the DE to FE 
ommuni
ation of for
es are analysed from the

energy point of view in this example. The energy of an elasti
 
ollision of a spheri
al

parti
le with a FE 
ube is reprodu
ed here. A fri
tionless parti
le moves without gravity

towards the 
ube indu
ing a normal 
ollision. The 
ube has its 4 inferior nodes �xed.

The 
onta
t law used is the Hertzian 
onta
t law and the 
onstitutive material model

for the solid is Neo-Hookean. The properties are summarized in the following table 4.2:

Table 4.2: Simulation parameters

Material properties DE FE Cal
ulation parameters

Radius (m) 0.3 - Initial pos. (DE) (m/s) [0.0, 0.03, 0.0]

Density (kg/m3
) 2 · 103 1 · 103 Initial vel. (DE) (m/s) [0.0,−1.0, 0.0]

Young's modulus (Pa) 5 · 106 5 · 106 Gravity (m/s2) [0.0, 0.0, 0.0]

Poisson's ratio 0.2 0.2 Time step (s) 5 · 10−5

Restitution 
oe�. 1.0 - Neighbour sear
h freq. 1

Fri
tion 
oe�. DE-FE 0.0 -

(a) Cube meshed by one hexahedron (b) Cube meshed by six tetrahedra

Figure 4.17: Sphere impa
ts a 
ube
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The 
ube is meshed using one single hexahedron and six tetrahedra (�gure 4.17). The

latter 
ase presents again the problem des
ribed in se
tion 4.3.2 in whi
h the 
onta
t

surfa
es deform implying a 
onta
t with two planes instead of the single plane 
onta
t

that o

urs with the quadrilateral surfa
e of the hexahedron. The two 
ases have been

run using both the dire
t interpolation and the Area Distribution Method (ADM).
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(a) Dire
t interpolation with 8-nodded hexahedron
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(b) Dire
t interpolation with linear tetrahedra
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(
) ADM with 8-nodded hexahedron
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(d) ADM with linear tetrahedra

Figure 4.18: Dire
t interpolation and ADM behaviour 
omparison in a single 
ollision

The results show that all 
ases behave in a similar way ex
ept for the dire
t interpolation

method using tetrahedra, whi
h presents a sti�er 
onta
t (shorter duration) yielding to a

higher ex
itement of the solid 
ube. The distributed method instead, manages to 
apture

the same 
onta
t time for the two dis
retizations. This is be
ause the interse
tion area

is the one 
ontrolling the magnitude of the total for
e, whi
h is pra
ti
ally the same in

the two 
ases (�gure 4.18(
) and �gure 4.18(d)), regardless of how many 
onta
t for
es

a
t on the parti
le.
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Energy test in a multi DE-FE system

A �nal example is designed to 
he
k the global 
onservation of energy of the 
oupled

DE-FE algorithm. All fri
tional and dissipation me
hanisms have been disabled for sake

of simpli
ity and a purely elasti
 
onstitutive law is used for the material des
ription

and for the 
onta
t modelling.

(a) Simulation set-up (b) Displa
ement at time t = 23.4s. 2D view

(
) Displa
ement at time t = 23.4s. 3D view

Figure 4.19: Pendulum-like prism intera
ting with several spheri
al DEs
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A prismati
 stru
ture with a node �xed in one extreme os
illates like a pendulum under

the a
tion of a gravity for
e. Four spheri
al parti
les are set in the domain whi
h have


ollision with the stru
ture, among themselves, and with the rigid walls 
losing the do-

main (�gure 4.19(a)). The prism has been dis
retized with a mesh of 4× 4× 20 = 320

8-nodded hexahedra.

The test has been run using a Hertzian 
onta
t law with a large deformation Neo-

Hookean model for the solid. The ADM has been used to interpolate the for
es. The

parameters are summarized in the following table 4.3:

Table 4.3: Simulation parameters

Material properties DE FE Cal
ulation parameters

Radius (m) 0.6 Gravity (m/s2) [0.0,−1.0, 0.0]

Density (kg/m3
) 1.5 ·103 1 · 103 Time step (s) 5 · 10−5

Young's modulus (Pa) 1 · 106 5 · 106∗ Neighbour sear
h freq. 1

Poisson's ratio 0.2 0.2 DE-FE 
onta
t model. ADM

Restitution 
oe�. 1.0 -

Fri
tion 
oe�. DE-FE 0.0 -

∗
The Young's modulus of the surrounding walls was set to E

wall

→ ∞.

The results (�gure 4.20) are obtained evaluating all energy terms in the system. Sin
e

the deformation and 
ollision regime is fully elasti
 and no fri
tional neither dissipative

for
es are 
onsidered, the total amount of energy expressed by equation 4.81 should be


onstant along the simulation. For the presented results, E0 is set su
h that total energy

ET = 0.

ET = Eint

FE

+ Ekin

FE

+ Ekin

DE

− Ebody

FE

− Ebody

DE

− E
ont − E0
(4.81a)
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Figure 4.20: Total energy of the system

As the simulation evolves the behaviour turns more 
haoti
. Sin
e there is no dissipa-

tion, the prism ex
ites di�erent high frequen
y vibration modes due to the 
ollisions in

di�erent positions and dire
tions. The overall energy keeps balan
ed as it was expe
ted.

The results validates the DE-FE 
oupling by means of the Area Distributed Method

and indi
ates that the time step sele
ted for this simulation is stable.



DE-FE 
oupling �ow
hart 141

4.6 DE-FE 
oupling �ow
hart

Figure 4.21: Basi
 �ow
hart of the 
oupled DE-FE for parti
le-stru
ture intera
tion





Chapter 5
DE model for 
ohesive material

Within the DEM, the individual parti
les are modelled as sti� bodies whi
h intera
t via


onta
t for
es. This simpli�
ation has the advantage of representing the 
ompli
ated

mi
ros
opi
 behaviour by a simple system of linear equations based on a relatively small

number of parameters. In problems where large deformations and fra
ture are involved

the DEM has attra
tive features in 
ontrast to 
ontinuum-based methods su
h as FEM,

spe
ially its naturally dis
ontinuous behaviour. The main aspiration is to have a gen-

eral 
omputational method for uni�ed modelling of the me
hani
al behaviour of solid

and parti
ulate materials, in
luding the transition from solid phase to parti
ulate phase.

It is agreed that the Dis
rete Element Method is a great te
hnique to simulate the

dis
ontinuous media as a system of independent parti
les in dynami
 motion. How-

ever, regarding the simulation of 
ontinua, the la
k of theoreti
al basis even for linear

elasti
ity has restri
ted its appli
ation. There have been, a large number of di�erent

approa
hes for this question: How should the 
onta
t models be 
hara
terized (mi
ro

s
ale parameters) in order to resolve the ma
ro s
ale 
ontinuum behaviour? The 
hal-

lenge in all DEM models is to �nd an obje
tive and a

urate relationship between the

DEM parameters and the standard 
onstitutive parameters of a 
ontinuum me
hani
s

model, namely the Young modulus E, the Poisson's ratio ν and 
lear determination of

the stress and strain tensors and its 
onstitutive relations.

The de�nition of the mi
ro parameters 
an be done globally with uniform values for

all intera
tions between parti
les or lo
ally based on the properties of ea
h pair of par-
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ti
les at its intera
tion points. The �rst approa
h has been taken by several authors

[63, 95, 105℄ whi
h obtain the values 
orrelating numeri
al experiments and laboratory

tests or performing an adimensional analysis as is suggested in [50, 52℄. Alternatively,

the lo
al approa
h, tries to �nd a me
hani
al relationship between the mi
ro and ma
ro

parameters. It en
ompasses many di�erent interpretations for the de�nition of the DEM

parameters [29, 35, 46, 101, 120, 128℄.

Both of these approa
hes give DEM a phenomenologi
al 
hara
ter whi
h relies on a 
al-

ibration pro
ess in order to 
orre
tly determine the parameters that rule every spe
i�


problem. Generally, the results are dependent on the dis
retization and the a

ura
y is

far below that of 
ontinuum based methods. Alternatives to this are, on the one hand,

the use of a two s
ale or embedded DE-FE 
ombined method [85, 95, 146℄ in whi
h the

FEM is adopted in the 
ontinuum parts and the DEM is used when damage appears.

On the other hand, some alternative methods have been published whi
h use energy

equivalen
e prin
iples to model the inter-element laws 
laiming not to require 
alibra-

tion [83℄. These approa
hes are still not too widespread and require further development

to be adapted to non-linear problems with proper des
ription of failure.

In this 
hapter, spheri
al parti
les are employed as dis
rete elements to model geoma-

terials, namely ro
k or 
on
rete. To that end, a 
onstitutive model framed on the lo
al

approa
h, the DEMpa
k model [96℄, has been developed and it will be thoroughly de-

s
ribed in se
tion 5.2. Classi
al methods are used for the 
onta
t dete
tion (se
tion 2.2)

with a spe
ial treatment of the neighbours whi
h 
an have bonds whi
h are 
ohesive or

not and 
an handle initial gaps and interpenetration. The integration of the equations

of motions will be performed normally with the Velo
ity Verlet s
heme, see se
tion 2.6.1.

After the dis
ussion on general 
hara
teristi
s of the DE methods applied to simulate


ontinua and the presentation of the model, some basi
 numeri
al analysis are presented

to asses the behaviour of the method. Later on, a set of examples regarding the simula-

tion of laboratory tests on 
on
rete spe
imens are presented; they have been run under

the developed Virtual Lab module (se
tion 6.1.4) whi
h is integrated in the DEMpa
k


ode (www.
imne.
om/dempa
k).
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5.1 DEM as a dis
retization method

5.1.1 Simulation s
ale

The �rst aspe
t to de
ide is the relation between a dis
rete element in the simulation

and the physi
al parti
les or media being modelled. The one-to-one approa
h has been

su

essfully applied to problems whi
h lie in di�erent s
ales in
luding simulations at the

atomisti
 level (�gure 5.1(a)) under the framework of mole
ular dynami
s, to simula-

tions of granular matter, ranging from powder parti
les (µm) to ro
k blo
ks (m).

The fra
ture of geomaterials su
h as ro
k or 
on
rete o

ur at the mesos
ale (mm),

generally in the interfa
es between the aggregates and the paste (�gure 5.1(b)). At this

s
ale, a simple 
on
rete laboratory 
on
rete spe
imen of 15 
m diameter and 30 
m

height, involving �ne aggregates on the order of 500 µm, would require approximately

5 million one-to-one dis
rete elements.

(a) Crystalline mi
ro-stru
ture of 
ement (b) Detail of paste, agregate and voids in 
on
rete

Figure 5.1: Two di�erent s
ales in 
on
rete. Taken from: Google images

Sin
e this be
omes impra
ti
al for appli
ations on real stru
tures, normally this is

done in a very small domain from whi
h, using multi-s
ale approa
hes, ma
ros
opi



onstitutive laws for a FE dis
retization 
an be derived. Alternatively the ma
ros
op-

i
al approa
h 
an be taken. It involves the employment of larger elements in whi
h a

measurement is assumed to yield values whi
h are representative of the whole volume

modelled by the element dis
arding any dis
ontinuity in the media that 
omposes it. In

this regard, the employment of DE as a dis
retization method to ma
ros
opi
ally model

a 
ontinuum might lead to a 
ontradi
tion. It is also debatable that, at this ma
ros
opi


s
ale, the simulation of fra
turing using dis
rete elements 
an yield meaningful results

in the predi
tion and tra
king and bran
hing of fra
tures.
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In this 
hapter, the DEMpa
k model is presented, whi
h attempts to simulate geo-

materials employing DEM as a dis
retization method at the ma
ros
opi
 level. Basi


numeri
al analysis and presentation are in
luded in the 
hapter to support the dis
ussion

on whether the method is adequate or not for this purpose.

5.1.2 Partition of spa
e

The �rst 
hallenge a DEM fa
es is the ful�lment of the partition of spa
e. The dis-


retization of the 
omplete volume of a body without the addition of extra volume

or the in
lusion of voids is not feasible using spheri
al parti
les or other similar DE

geometries.

Spheres pa
king

The meshes obtained when dis
retizing regular geometri
al 3D obje
ts su
h as 
ubes,

prisms or 
ylinders with spheres having tangential 
onta
t yield a lot of empty spa
e

left. The maximum density sphere pa
king that 
an be obtained for a regular mesh


omes from a distribution in the following manner:

Figure 5.2: So-
alled 
ubi
 pa
king for spheres. Taken from: Wolfram Alpha

Starting with a layer of spheres in a hexagonal latti
e, the next layer is pla
ed in the

lowest points you 
an �nd above the �rst one, and so on in the same way oranges are

sta
ked in a shop. At ea
h step there are two 
hoi
es of where to put the next layer,

so this natural method of sta
king the spheres 
reates an un
ountably in�nite number
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of equally dense pa
kings, the best known of whi
h are 
alled 
ubi
 
lose pa
king and

hexagonal 
lose pa
king. Ea
h of these arrangements has an average density of:

π

3
√
2
≈ 0.740480189 (5.1)

The Kepler 
onje
ture states that this is the best that 
an be done, i.e, no other ar-

rangement of identi
al spheres has a higher average density.

The optimal (minimum) porosity obtained with parti
les of the same radius is then in

the order of 25%. Higher 
ompa
tness obviously require the 
ombination of di�erent

sizes. However, a 
onsiderably large dispersion (small spheres in 
onta
t with large

ones) yields obvious 
ounterparts in a DE simulation su
h as ine�
ient global sear
h

algorithms, heterogeneous 
onta
t 
hara
terization and limiting 
riti
al times for the

expli
it s
hemes.

Mesh generator

The dis
rete meshes that are used in DEMpa
k are generated using the sphere mesher

of GiD. It has to be pointed out that, sin
e the mesher has some imperfe
tions, gaps,

in
lusions and some abnormal big or small parti
les will be obtained. This has to be

taken into a

ount in the next se
tions to properly de�ne their properties in the model.

Figure 5.3: Cut view of a 3D sphere mesh with imperfe
tions generated by GiD

In se
tion 5.3, the explanation of how to deal with these imperfe
tions and how to


omplete the volume modelled 
an be found.
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5.1.3 Chara
terization of bonds

The overall behaviour of a material 
an be reprodu
ed by lo
ally asso
iating a simple


onstitutive law to ea
h 
onta
t interfa
e. The intera
tion between spheri
al elements i

and j with radius Ri and Rj is de�ned within an intera
tion range whi
h is not always

a tangential 
onta
t situation (Figure 5.4).

1− β ≤ dij
Ri +Rj

≤ 1 + β (5.2)

dij is the distan
e between the 
entroids of parti
les i and j and β is the intera
tion range

parameter in the initial 
on�guration. The equilibrium position is then de�ned in
luding

gaps or indentations up to some toleran
e ±β. In this work, the value of β = 0.15 was


hosen for the examples. By the introdu
tion of the initial delta δ0 = ±β(Ri +Rj), the

initial distan
e dij 
an be simply written as:

dij = Ri +Rj + δ0 (5.3)

The handling of these non tangential 
onta
ts is further dis
ussed in terms of the im-

plementation in se
tion 5.1.4.

Figure 5.4: De�nition of the 
onta
t interfa
e bond

Every bond represents an intera
tion region that a

ounts for some volume of the full

dis
retized domain. The interfa
e has an asso
iated 
onta
t area:

Aij = πR2
c (5.4)

Rc is taken in the DEMpa
k model as Rc = min(Ri, Rj). This 
hoi
e does not ensure
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however, that the representative volumes, here represented as 
ylinders, a

omplish the

partition of unity. Instead, these volumes usually present overlapping between di�erent


onta
t pairs whi
h, at the end, translates into an over-sti� system. The DEMpa
k

method suggests the employment of a 
orre
ted area:

Āij = αAij
(5.5)

with a global 
orre
tion 
orre
tion value α:

α = 40
P

Nc

(5.6)

where Nc and P are the average number of 
onta
ts per sphere and the average porosity

in the mesh. Eq.(5.6) has been dedu
ed by de�ning the optimal values for the number

of 
onta
ts per sphere and the global porosity equal to 10 and 25%, respe
tively (see the

perfe
t pa
king of spheres in se
tion 5.1.2). Some analysis done with the model showed

that this 
orre
tion of areas is still mesh-dependent and has to be 
alibrated. In se
tion

5.3 a new area determination is proposed whi
h improves the DEMpa
k model in terms

of avoiding mesh-dependen
y for the sti�ness 
hara
terization.

5.1.4 Neighbour treatment in the 
ohesive model

A few details are given here on the implementation of a generi
 
ohesive model using a

sphere mesh.

Initial indentation

The position of equilibrium for the 
onta
ts is set with their initial 
on�guration. The

initial status between the spheres is not always a tangential 
onta
t and 
an involve

gaps or initial indentations up to some toleran
e limit β to be de�ned for every mesh.

This has been depi
ted in �gure 5.4. The initial distan
e of ea
h pair is stored as the

passive initial 
onta
t status (equilibrium)

1

.

1

In a dis
ontinuum 
ase, normally the initial indentations are eliminated before the simulation starts

to ensure tangential 
onta
ts.
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Cohesive groups

The model allows testing di�erent 
ohesive entities whi
h are meshed independently

with spheres. Ea
h of these entities may form an independent body with parti
les inter-


onne
ted through bonds that typi
ally 
an resist tension and shear. Several 
ohesive

entities, with the same material or with di�erent materials, 
an intera
t among them

and also with other dis
ontinuum parti
les in the model.

In terms of implementation in the DEMpa
k 
ode, the requisites for a 
ohesive bond to

be generated are:

• Parti
les having an initial positive indentation or initial gap smaller than 
ertain

toleran
e.

• Parti
les belonging to a 
ohesive group (no dis
ontinuum parti
les).

• Parti
les belonging to the same 
ohesive group (same body).

As a 
lari�
ation example, �gure 5.5 shows a pillar and a foundation of 
on
rete whi
h


onstitute two separate bodies identi�ed with two di�erent 
ohesive groups. The par-

ti
les de�ning every group are 
ohesive sin
e the material is 
on
rete. The 
onta
ts

between 
on
rete parti
les belonging to a di�erent group however, are non 
ohesive, and

a fri
tional 
onta
t is de�ned. Finally the gravel surrounding the stru
ture form part of

a third group whi
h is non 
ohesive.

Figure 5.5: Pillar and foundation of 
ement in a granular terrain. Example of the bonds

formed in ea
h of the di�erent 
ohesive groups



DEM as a dis
retization method 151

Neighbour lists

In the DEMpa
k software the neighbouring parti
les of a given DE are sorted in the

following way:

[Current neighbours℄ = [Initial neighbours℄ + [New neighbours℄

The initial neighbours array is �xed and only the new neighbours are updated at ea
h

time step. The initial list is formed during the initialization phase of the simulation with

the neighbours that meet the above-mentioned 
onditions forming a 
ohesive bond. The

initial neighbour array has two arrays asso
iated to it, one array 
ontaining all the val-

ues for the initial indentations δ0 whi
h de�nes the equilibrium position with ea
h of

the initial neighbours and an array with an integer de�ning the failure status of every


onta
t. The failure status is initialized with a value indi
ating that a 
ohesive bond

exists until failure o

urs and then 
hanges to a value 
ategorizing the type of failure

given by the 
onstitutive law, namely shear failure, tension failure, et
.

The DEMpa
k 
onstitutive law applies dire
tly to the initial neighbours whi
h are still


ohesive. This permits simulating 
ohesive material with large deformations in whi
h

the large negative indentations 
ould not be tra
ed by the neighbour sear
h algorithm.

On the other hand, the rest of the neighbours are treated as a dis
ontinuum 
onta
t as

des
ribed in 
hapter 2 and they need to be found regularly by the neighbour sear
h.

5.1.5 Cohesive models in linear elasti
ity

The main goal of using DEM in the simulation of 
ohesive materials su
h as 
on
rete

or ro
k, is reprodu
ing its 
hara
teristi
 multi-fra
turing pattern, as well as an a

urate

determination of the strains and stresses whi
h they are subje
ted to. The aspiration is

to have a general method for a uni�ed modelling of the me
hani
al behaviour of solids

and parti
les, in
luding the transition from the solid to the parti
ulate phase.

A ne
essary �rst step for the method to assess, is to reprodu
e the linear elasti
ity.

Unfortunately, there is not a dire
t unique general way to a
hieve that. An example of

the state of the art for ea
h of the two approa
hes des
ribed in the introdu
tion of the


hapter, namely the global and the lo
al approa
h, are brie�y reviewed in this se
tion.
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Dimensional Analysis - Global Approa
h

Huang [52℄ used dimensionless laws in order to estimate the me
hani
al behaviour of

an assembly of parti
les under quasi-stati
 
onditions. It is assumed that the problem

is governed by the following set of 
hara
teristi
s parameters: kn, kt, R̂, e, ρ, L, v;

where kn and kt de�ne the 
onta
t sti�ness in normal and tangential dire
tions, R̂ is

an averaged radius, ρ the density, L is the sample length, v is the load velo
ity and e

the porosity of the assembly, as an indire
t measure of the parti
le size distribution and


onta
t density. Later, Yang et al. [144℄ showed that the porosity e may not be a good

index to represent the parti
le size distribution, and generalized the in�uen
e of the

parti
le assembly by a parameter Φ summarizing di�erent mesh e�e
ts su
h as parti
le

size distribution, 
oordination number (average number of neighbours per parti
le), et
.

Sin
e there are seven parameters and three independent dimensions, a

ording to the

Bu
kingham theorem four independent dimensionless parameters govern the elasti
 re-

sponse of the assembly:

{

kt
kn

,Φ,
R̂

L
,

v

√

kn/ρ

}

(5.7)

It is assumed that, if an enough number of parti
les is 
onsidered, the ratio (r/L << 1)


an be ignored. The same 
an be assumed for the velo
ity, 
onsidering the 
ondition of

quasi-stati
 loading (v/
√

kn/ρ << 1). The dependen
e of the elasti
 
onstants on the

mi
ro-s
ale parameters 
an thus be redu
ed to the following s
aling laws:

EL

kn
= ΨE

(

kt
kn

,Φ

)

, ν = Ψν

(

kt
kn

,Φ

)

(5.8)

A

ording to the found s
aling laws, the ma
ros
opi
 elasti
 
onstants E and ν are


ompletely determined if the normal and shear sti�ness are known for a given size

distribution of the parti
les. This means that the relationship between the mi
ro pa-

rameters kn, kt and the ma
ro parameters only hold for a spe
i�
 assembly of parti
les,

with a given 
on�guration, and 
an not be s
aled to a di�erent one. In other words, the

method is mesh dependent and needs 
alibration.
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This approa
h was also followed by Labra [63℄, obtaining the following results:

(a) Plot κ versus ν in 2D. Taken from: Labra [63℄

(b) Plot κ versus ν in 3D. Taken from: Labra [63℄

Figure 5.6: Poisson's ratio for di�erent values of κ in a UCS test on a 
on
rete spe
imen

Labra found out that, for a given assembly, the kt/kn ratio is the main key to determine

the ma
ros
opi
al Poisson's ratio of the model. As it 
an be seen, there exists a limitation

on the maximum value of Poisson's ratio to the value of 0.25 in 2D 
ase and nearly 0.3

in 3D. Similar results are obtained in the alternative lo
al approa
h as it is shown next.

Regular assemblies - Lo
al Approa
h

An interesting study was perform by Tavarez and Plesha [120℄ with a lo
al de�nition of

the 
onta
t parameters in a regular assembly of parti
les. Their attempt was to theo-

reti
ally establish the mi
ro-ma
ro parameters relationship for a given unit 
ell of the

material.

Figure 5.7 shows an isotropi
 solid material element (with known E and ν) subje
ted

to uniaxial stress. The volume of material is then modelled using the DEM 
lose-pa
ked
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Figure 5.7: Close-pa
ked DEM unit 
ell for determination of inter-element spring 
on-

stants. Taken from: Tavarez and Plesha [120℄

unit 
ell with the loading shown in Figure 5.7. The unit 
ell 
ontains seven elements

having three degrees of freedom per element (two translations and one rotation). Due

to the symmetry of loading, all rotations in the unit 
ell are zero. Therefore, a matrix

equation for the 14 translational unknowns 
an be expressed in the form of:

K · u = f (5.9)

Expressing the sti�ness matrix K as a fun
tion of kn and kt and the geometry and

solving for a known 
ase with determined ve
tors f and u, the normal and tangential

elasti
 sti�ness for this assembly 
an be found:

kn =
1√

3(1− ν∗)
· E∗t , kt =

1− 3ν∗

(1 + ν∗)
· kn (5.10)

Where E∗
and ν∗

are E and ν for the 2D plane stress or E/(1 − ν2) and ν/(1 − ν)

respe
tively in plane strain 
ase.

Figure 5.8: DEM dis
retization and unit 
ell used in Tavarez and Plesha work. Taken

from: Tavarez and Plesha [120℄

The normal and tangential sti�ness obtained in numeri
al simulations by this method-
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ology is in total agreement with equations 5.10. Assuming the shear sti�ness must be

non-negative, it is interesting to note that these equations limit the maximum value of

ν to 1/3 for plane stress and 1/4 for plane strain. This results are in the same line as

the ones obtained by the dimensional analysis previously shown.

In general, both global and lo
al approa
hes require a 
alibration pro
edure for every

mesh in order to 
orre
tly 
apture the Young's modulus and Poisson's ratio. In the 
ase

of regular assemblies this is not ne
essary sin
e an analyti
al expression 
an be derived

for a given mesh; the disadvantage of this method however, is that the multi-fra
ture

path is prede�ned by the mesh as well. In both reviewed methods the Poisson's ratio

is limited to maximum values of 1/4 and is mesh dependent. The aim of this 
hapter

is to analyse the DEMpa
k model, a lo
al approa
h using irregular meshes, whi
h aims

to model in �rst instan
e the linear elasti
ity problem for di�erent values of Young's

modulus and Poisson's ratio and later be able to simulate the failure of material. First

the des
ription of the model is presented followed by numeri
al analysis to asses its

propertites as a dis
retization method.

5.2 The DEMpa
k model for 
ohesive material

The 
hara
terization of the 
onstitutive behaviour of a material in the DEM is through

one-dimensional non-linear relationship between for
es and displa
ements at the 
onta
t

interfa
es. Standard 
onstitutive models for the 
ohesive DEM are 
hara
terized by the

following parameters:

• Normal and shear sti�ness parameters kn and kt.

• Normal and shear strength parameters Fn and Ft.

• Coulomb internal fri
tion angle and 
oe�
ient φs and µs.

• Coulomb dynami
 fri
tion angle and 
oe�
ient φd and µd.

• Lo
al damping 
oe�
ients cn, ct at the 
onta
t interfa
e.

The rheologi
al model is exa
tly the same as the one presented in 
hapter 2 for the

dis
ontiuum model (�gure 2.6). It has the pe
uliarity that now the bonds 
an work

both in 
ompression and tension. On the top of that, limiting values for the for
es in
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both normal and shear dire
tion determine 
hanges in the 
onta
t laws su
h as breakage

of the bonds, plasti
ity, damage, et
. After fully breakage of the bonds, the parti
les

re
over their original dis
rete fri
tional behaviour.

In this se
tion, the so 
alled DEMpa
k model for the analysis of 
on
rete material will

be presented. The model, whi
h derives from the linear LS+D law (se
tion 2.5.1), has

been developed by Oñate et al. in [96℄ and implemented in the DEMpa
k software to

be used in engineering proje
ts. It has been validated through the analysis of 
on
rete

samples in several laboratory tests su
h as the Uniaxial Compressive Strength (UCS)

test, triaxial tests and the Brazilian Tensile Strength (BTS) test. The results obtained

with that model 
ompare well with experimental data for the tests provided by the Te
h-

ni
al University of Catalonia (UPC) for the 
on
rete samples reported in Sfer et al. [112℄.

The DEMpa
k model, as other 
ohesive models, presents several limitations whi
h will

be brie�y reported here together with the proposal of a few possible improvements.

5.2.1 Elasti
 
onstitutive parameters

Let us assume that an individual parti
le is 
onne
ted to the adja
ent parti
les by

appropriate relationships at the 
onta
t interfa
es between the parti
le and the adja
ent

ones. These relationships de�ne either a 
ohesive bond or a fri
tional sliding situation

at the interfa
e.

Normal 
onta
t for
e

The normal for
e Fn at the 
onta
t interfa
e between parti
les i and j is given by

F ij
n = σnĀ

ij
(5.11)

where σn is the normal stress (σn = niσijnj) at the 
onta
t interfa
e and Āij
is the

e�e
tive area at the interfa
e de�ned in eq. 5.5.

The normal stress σn is related to the normal strain between the spheres, εn, by a

vis
o-elasti
 law as:

σn = E εn + c ε̇n (5.12)
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where the normal strain and its rate 
an be expressed:

εn =
un

dij
, ε̇n =

u̇n

dij
(5.13)

Combining equation 5.13 and 5.12 into equation 5.11, the normal for
e-displa
ement

relationship at the interfa
e between parti
les i and j is dedu
ed as:

F ij
n =

Āij

dij
(Eun + cu̇n) = knun + cnu̇n (5.14)

In this expression, the 
on
ept of the indentation δ is generalized to the displa
ement

un whi
h 
an be positive (tension) or negative (
ompression). Substituting eqs. 5.5 and

2.19 into 5.14 we �nd the expression of the sti�ness and vis
ous (damping) 
oe�
ients

at the 
onta
t interfa
e as:

kn =
απR2

c

dij
E , cn =

α2πRcξ

dij

√

meqkn (5.15)

Eq.5.14 is assumed to hold in the elasti
 regime for both the normal tensile for
e Fnt

and the normal 
ompressive for
e Fnc
. It results in a model equivalent to the LS+D

(se
tion 2.5.1) with its own parti
ular de�nition of the kn sti�ness.

Shear for
es

The shear for
e F
ij
t along the shear dire
tion t

ij
s is modelled by the LS+D model (se
tion

2.5.1) whi
h applies in both 
ompression and tension states. Here an expression using

an in
remental update is presented:

F ij, n+1
t = F ij, n

t + kt∆sn+1
(5.16)

No lo
al damping was employed in the tangential dire
tion. The limiting values of

the tangential for
e are de�ned by the failure mode des
ribed in se
tion 5.2.3. The

determination of the relative tangential displa
ement ∆s was detailed already for the

dis
ontinuum 
ase in se
tion 2.5.1. The sti�ness value kt is dedu
ed similarly as the

normal for
es yielding to a ratio:

κ =
kt
kn

=
1

2(1 + ν)
(5.17)
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5.2.2 Global ba
kground damping for
e

Some appli
ation examples happen to be in a stati
 or quasi-stati
 regime. The appli-


ation of a global damping to all the parti
le systems 
an numeri
ally help the dynami


expli
it 
al
ulation a
hieving a quasi-stati
 state of equilibrium. This damping whi
h is

non-vis
ous is additional to the lo
al damping introdu
ed at the 
onta
t interfa
e. The

following global damping for
es F
damp
i and torques T

damp
i were 
onsidered:

F
damp
i = −αt

∥

∥

∥

∥

∥

F
ext
i +

nc
∑

j=1

F
ij

∥

∥

∥

∥

∥

u̇i

‖u̇i‖
(5.18)

T
damp
i = −αr ‖Ti‖

ωi

‖ωi‖
(5.19)

This damping redu
es the total unbalan
ed for
es resulting in every parti
le. The

translational and rotational damping 
oe�
ients αt
and αr

are design parameters. A

pra
ti
al 
hoi
e is to de�ne αt
and αr

as a fra
tion of the sti�ness parameters kn and

kt, respe
tively. In this work the value taken for the laboratory tests in se
tion 5.5 is

αt = αr = 0.2. Alternative a vis
ous type damping 
an be used as des
ribed in [63, 95℄.

5.2.3 Elasto-damage model for tension and shear for
es

In order to reprodu
e the behaviour of the �
tional 
ohesive materials like 
ement,

ro
k or 
on
rete, the DEMpa
k model introdu
es a simpli�ed unidimensional non-linear

elasti
ity, plasti
ity and damage laws as well as a spe
i�
 un
oupled

2

failure 
riteria.

These models were spe
ially designed for its appli
ation in proje
ts in the �eld of 
on
rete

test simulation (se
tion 5.5) and ro
k me
hani
s. For 
onvenien
e the upper indi
es i, j

are omitted from now onward in the de�nition of the normal and shear for
es F
ij
n , F

ij
t

at a 
onta
t interfa
e.

Normal and shear failure

The DEMpa
k model assumes that the bonds are 
ohesive (they 
an work both in


ompression and tension) until some failure 
riteria related to the shear or tensile stresses

is met. The un
oupled failure (de-bonding) 
riterion for the normal and tangential

2

The term un
oupled means that the tension and shear failure 
riteria are independent of one

another.
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dire
tions at the 
onta
t interfa
e between spheres i and j is written as:

Fnt
≥ Fnt

, Ft ≥ Ft (5.20)

where Fnt
and Ft are the interfa
e strengths for pure tension and shear-
ompression


onditions respe
tively, de�ned in the model as:

Fnt
= σf

t Ā
ij , Ft = τ f Āij + µs ·max (Fn, 0) (5.21)

where σf
t and τ f are the tension and shear failure stresses, respe
tively and µs = tanφs

is the (stati
) internal fri
tion parameter. These values are assumed to be an intrinsi


property of the material. The failure stress σf
t is typi
ally determined from a BTS

laboratory test. In this work, τ f and φs have been taken respe
tively as the 
ohesion

and the internal fri
tion angle of the Mohr-Coulomb 
riterion.

Figure 5.9: Un
oupled failure 
riterion in terms of normal and shear for
es

The values of τ f and φs 
an be estimated following the pro
edure proposed by Wang

et al. [134℄ for ro
ks:

K = tan2

(

π

4
+

φs

2

)

, P = 2τ f tan

(

π

4
+

φs

2

)

(5.22)

where K is the slope of the line that �ts the values of the limit axial stress versus the


on�ning pressure for di�erent triaxial tests and P is the value of the limit axial stress

(de�ning the onset of the non linear bran
h) for the Uniform Compressive Strength

(UCS) test. The value of φs and τ f are obtained from equations 5.22. The 
ohesive

models of the DEM, in general, require the 
alibration of these parameters phenomeno-

logi
ally using this or other pro
edures trying to �t the experimental 
urves [96, 128℄.
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Figure 5.9 shows the graphi
 representation of the failure 
riteria des
ribed by eq. 5.20

and eq. 5.21 whi
h assumes the simpli�
ation that the tension and shear for
es 
on-

tribute to the failure of the 
onta
t interfa
e in a de
oupled manner. On the other hand,

shear failure under normal 
ompression for
es follows a Mohr-Coulomb type 
onstitutive

law, with the failure line being a fun
tion of the 
ohesion, the 
ompression for
e and the

internal fri
tional angle.

Damage evolution law

Elasti
 damage 
an be a

ounted by assuming a linear evolution of the damage param-

eters dn and dt whi
h 
ontrol the loss of sti�ness in the for
e-displa
ement relationships

in the normal (tensile) and tangential dire
tions, respe
tively (Figure 5.10).

(a) Damage law for tension (b) Damage law for shear

Figure 5.10: Undamaged and damaged elasti
 module under tension and shear for
es

The 
onstitutive relationships for the elasto-damage model are written as:

Normal (tensile) dire
tion







Fnt = kd
n un = (1− dn) kn un , if 0 < dn ≤ 1

Fnt
= 0 , if dn ≥ 1

(5.23a)

Tangential dire
tion







Ft = kd
t ut = (1− dt) kt ut , if 0 < dt ≤ 1

Fnt
= 0 , if dt ≥ 1

(5.23b)

For the undamaged state dn = 0 and dt = 0, while for a damaged state 0 < dn ≤ 1 and

0 < dt ≤ 1. kd
n and kd

t are damaged elasti
 sti�ness parameters.
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The evolution of the damage parameters is 
hosen evolve linearly between the two limits

ul
and uf

for both tangential and tensional dire
tions that have to be introdu
ed in the

model. Therefore, the evolution of the damage parameters is expressed:

dn =
un − ul

n

uf
n − ul

n

, dt =
ut − ul

t

uf
t − ul

t

(5.24)

Damage e�e
ts are assumed to o

ur when the failure strength 
onditions are satis�ed:

Fnt
≥ Fd

nt
, Ft ≥ Fd

t (5.25)

At the same time the limit strengths Ft and Ft evolve due damage in a non-linear way:

Fd
nt

= kn(1− dn) ·
[

ul
n + d(uf

n − ul
n)
]

Fd
t = kt(1− dt) ·

[

ul
t + d(uf

t − ul
t)
]

(5.26)

where Fd
nt
and Fd

t are the damaged interfa
e strengths for pure tension and pure shear


onditions, respe
tively. Other de�nitions using fra
ture me
hani
s arguments 
an be

found in [76, 95℄.

5.2.4 Elasto-plasti
 model for 
ompressive for
es

 

Figure 5.11: Normal 
ompressive stress-axial strain relationship in a Uniaxial Strain

Compa
tion test for a saturated 
ement sample. Taken from Oñate et al. [96℄



162 DE model for 
ohesive material

The 
ompressive stress-strain behaviour in the normal dire
tion for fri
tional materials

su
h as 
ement and 
on
rete is typi
ally governed by an initial elasti
 law up to a limit

de�ned by the 
ompressive axial stress σel, followed by a non-linear elasti
-plasti
 be-

haviour that varies for ea
h material. An example is given in �gure 5.11.

The 
ommon strategy in a DEM 
ode is to phenomenologi
ally identify the parameters

that de�ne a generi
 and simple non linear and plasti
ity law on the normal 
onta
ts

[128℄. Here, a simple model is introdu
ed where the elasto-plasti
 relationships in the

normal 
ompressive dire
tion are de�ned as:

∆Fnc
= kni

∆un for ∆un ≥ 0 (5.27a)

∆Fnc
= kn0

∆un for ∆un < 0 (5.27b)

where kn0
is the initial (elasti
) 
ompressive sti�ness 
orresponding to the material

Young's modulus E = E0, and kni
is the tangent 
ompressive sti�ness given by:

kni
=

kn0

YRCi

(5.28)

YRCi is the ratio between the original and the new apparent Young's modulus YRCi =

E0/Ei. Several 
onse
utive bran
hes 
an be introdu
ed in the model based on the

de�nition of the strength limits, denoted LCSi, in whi
h the 
ompressive sti�ness 
hanges

its slope as depi
ted in �gure 5.12.

Figure 5.12: De�nition of the model parameters of the elasto-plasti
 model
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In the same way, the 
ompressive stress limit at whi
h the plasti
ity starts has to be

also introdu
ed. Normally it will 
oin
ide with the �rst 
hange of slope introdu
ed.

After that point, the unloading follows the initial elasti
 slope instead of going over the

non-linear loading path.

5.2.5 Post-failure shear-displa
ement relationship

A bond 
an break if the shear for
es or normal for
es in tension rea
h their respe
tive

strengths. In 
ase of employing a damage law, the 
omplete failure o

urs when the

maximum damage is a
hieved. After that point, the bond is no longer 
ohesive and the

basi
 fri
tional 
onta
t is re
overed from the LS+D model (se
tion 2.5.1).

Figure 5.13 shows the evolution of the failure lines from the undamaged to the fully

damaged state for the un
oupled model.

Figure 5.13: Damage surfa
es for un
oupled normal and shear failure

5.3 Virtual Polyhedron Area Corre
tion

This se
tion des
ribes a methodology to derive the 
onta
t areas in every bond su
h

that the partition of spa
e is ful�lled in a similar way as a Voronoi tessellation would

do but in a very 
heap and e�
ient manner. This provides an alternative to the global

adjustment parameter α (eq. 5.6) that the DEMpa
k model does in order to 
orre
t the

overestimation of the bonding areas (se
tion 5.2.1) whi
h was found not to be a

urate.



164 DE model for 
ohesive material

Conta
t parameters derivation

As a �rst step, the determination of the representative 
onta
t area Ac in a bond is

reviewed. The method proposes to obtain kn and kt from the respe
tive equivalent axial

and shear sti�ness that 
orresponds to a trun
ated 
oni
al volume (�gure 5.14).

Figure 5.14: De�nition of the 
onta
t interfa
e bonds in the Virtual Polyhedron method

The derivation is as follows:

un = uj
n − ui

n =

∫ L

0

ε dx =

∫ L

0

Fn

EA
dx =

Fn

E

∫ L

0

dx

A(x)
(5.29)

A linear variation of the radius:

R = Ri (1 + λ x) where λ =
Rj − Ri

Ri · (Ri +Rj + δ0)
(5.30)

yields to:

Fx = knun kn = πE
RiRj

Ri +Rj + δ0
(5.31)

Pro
eeding similarly, for the shear stress, the following is obtained:

kt = πG · RiRj

Ri +Rj + δ0
,

kt
kn

=
1

2(1 + ν)
=

G

E
(5.32)

The 
onta
t area 
an be regarded as:

Aij = πRiRj (5.33)

and then, the sti�ness parameters rewritten:
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kn =
EAij

Ri +Rj + δ0
, kt =

GAij

Ri +Rj + δ0
(5.34)

The full derivation 
an be found in [109℄.

Virtual polyhedra

Obviously, the areas resulting from equation 5.33 yield to overlapping of the 
onta
t

domains de�ned by the bonds ij linked to parti
le i. The solution suggested here is to

introdu
e a lo
al 
orre
tion (eq. 5.35) rather than the global fa
tor proposed by the

DEMpa
k model (eq. 5.6).

Āij = αiA
ij

(5.35)

The determination of a 
onsistent area of intera
tion 
an be a
hieved by de�ning a

portion of the plane 
entred at the 
onta
t point and normal to the line 
onne
ting

two parti
les whi
h is limited by the interse
tion with other 
onta
t planes (�gure 5.15).

These interse
tions lead to 
omplex geometries that de�ne irregular polyhedra of n sides

surrounding every parti
le. This would have the advantage that the partition of unity of

the domain would be a
hieved by the asso
iated volumes. However, the determination

of these geometries and their respe
tive area is an expensive 
al
ulation.

Figure 5.15: Polyhedron asso
iated to a parti
le. Taken from: De Pouplana [27℄

Trying to preserve the simpli
ity of the method, an approximation to this pro
edure is

introdu
ed. The idea is to approximate the irregular polyhedra of n fa
es to a virtual
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regular one of the same number of fa
es and determine the total 
overed surfa
e as

the surfa
e of the regular one. The assumption is that the total area of the resulting

polyhedron is similar to the total area of its regular 
ounterpart. It has been found

numeri
ally that the assumption of similar total surfa
e between regular and irregular

polyhedra en
losing an sphere is a

urate.

Figure 5.16: Platoni
 Solids, regular polyhedra. Taken from: Wikipedia

Table 5.1: 3D Polyhedra area ratio

Polyhedron Tetrahedron Hexahedron O
tahedron Dode
ahedron I
osahedron

Num. of neigh 4 6 8 12 20

Surfa
e area 24R2
√
3 24R2 12R2

√
3 600R2

25+11
√
5

√

5+2
√
5

5
120R2

√
3

7+3
√
5

Ratio of areas 3, 308 1, 910 1, 654 1, 325 1, 207

The radius 
an be taken as (1 + β)Ri when the initial 
on�guration is not tangent.

Table 5.2: 2D Polygons area ratio

Polygon Triangle Square Pentagon Hexagon Heptagon O
tagon Nonagon

Num. of neigh 3 4 5 6 7 8 9

Ratio of areas 1.654 1.273 1.156 1.103 1.073 1.055 1.043

Polygon De
agon Hende
agon Dode
agon Tride
agon Tetrade
agon

Num. of neigh 10 11 12 13 14

Ratio of areas 1.034 1.028 1.023 1.020 1.017

Table 5.1 summarizes the values of the ratio between the surfa
e of the existing regular

polyhedra (Platoni
 solids, Figure 5.16) and the surfa
e of the target sphere. Sin
e the
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number of neighbours 
an be any, the rest of the values for the virtual polyhedra has to

be interpolated. For a
ademi
al purposes, the same is done for the 2D 
ase with regular

polygons in table 5.2.

First, the areas Aij
with every 
onta
t are normally 
al
ulated using equation 5.33.

Then, the surfa
e of the sphere is 
al
ulated with the radius of the parti
le (a�e
ted

by β). The area As,nc
of the equivalent virtual polyhedron (or polygon) is obtained by

applying multiplying the sphere area times the 
orresponding ratio of areas in fun
tion of

the number of neighbours. Finally the 
orre
ted areas of 
onta
t Āij
for every neighbour

are determined applying the weighting value αi 
al
ulated as:

αi =
As,nc

∑nc

j=1A
ij

(5.36)

There are several aspe
ts of this methodology to take into a

ount regarding its imple-

mentation:

• The 
onta
t between two parti
les i and j yield to di�erent values of 
onta
t area

Āij
and Āji

at ea
h side. In order to respe
t Newton's Third Law, the mean of the

two values 
an be employed.

• The parti
les situated at the boundaries are not 
ompletely surrounded by other

spheres and need a spe
ial treatment. Details on this are given in [109℄.

• The 
orre
ted areas are 
al
ulated on
e at the beginning of the simulation and

de�ne the sti�ness values of the 
onta
ts. In large deformation 
ases the areas


ould be re
al
ulated.

• After failure of the bonds, the 
lassi
 LS+D model employed needs to be de�ned

with the same sti�ness as in the 
ohesive model in order to avoid sudden 
hange

in the 
onta
t for
es.

5.4 Numeri
al analysis of the 
ohesive model

The obje
tives of this se
tion is to numeri
ally analyse the DEM applied to the modelling

of a 
ontinuum by means of doing simple tests and 
he
king basi
 aspe
ts of the method

su
h as 
onvergen
e, mesh dependen
y, et
. This will be done employing the formulation

derived in se
tion 5.3.
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5.4.1 Area determination assessment

In this se
tion several examples are performed in order to 
he
k whether the method

proposed in se
tion 5.3, the Virtual Polyhedron Area Corre
tion, 
orre
tly estimates the

area of the geometries.

(a) Mesh 2D-1 (b) Mesh 2D-2 (
) Mesh 2D-3 (d) Mesh 2D-4 (e) Mesh 2D-5

Figure 5.17: 2D meshes used in the area determination analysis

A re
tangular geometry of 5 cm width and 10 cm height is meshed by 5 di�erent meshes

in 2D (�gure 5.17) whi
h range from a regular assembly of dis
s to a highly heterogeneous

distribution of the parti
le radius. Theoreti
ally, in every 
onta
ting pair a 
hara
ter-

isti
 area Āij
in 3D, or length in 2D, (se
tion 5.3) is assigned so that, in average, no

overlaps are introdu
ed (�gure 5.18).

Figure 5.18: Conta
t areas (lengths in 2D) asso
iated to ea
h 
onta
t

In order to 
he
k how well is the area assigned to the 
onta
ts, the following strategy

is done: several horizontal strips are determined de�ning groups of parti
les in 
onta
t.
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The total 
onta
t area between the parti
les of ea
h group proje
ted horizontally should

mat
h the transversal length (area in 3D) of the geometry. Several strips are set in

order to average the values obtained. This is also done for two di�erent 3D meshes of a


ylinder of 15 cm diameter and 30 cm height.

(a) Strips de�ned in mesh 2D-1 (b) Strips de�ned in mesh 3D-1 (
) Strips de�ned in mesh 3D-2

Figure 5.19: Examples of the strips de�ned in the meshes

In the following table 5.3 the properties of ea
h mesh are presented together with he

numeri
al results of the total area evaluation on the interfa
es.

Table 5.3: Properties of the meshes and results of the 
al
ulation of area

Mesh 2D-1 2D-2 2D-3 2D-4 2D-5 3D-1 3D-2

Num. of elements 2260 1262 725 1343 325 10511 13500

Mean radius (mm) 0, 72 1, 02 1, 42 1, 02 2, 0 4, 21 3, 86

Rel. stand. Dev.

1
(%) 45, 65 31, 16 10, 24 9, 23 0, 00 25, 25 25, 83

Coord. number

2 5, 08 5, 14 5, 24 5, 79 3, 76 10, 98 10, 97

Mesh porosity

3
(%) 11, 04 9, 39 6, 77 11, 14 18, 31 25, 44 25, 73

Num. area (cm, cm2
) 5, 17 5, 13 5, 11 4, 93 5, 00 179, 4 178, 3

Relative error (%) 3, 3 2, 6 2, 2 −1, 4 0, 0 1, 5 0, 9

1
Rel. stand. dev.: the ratio of standard deviation over the mean value.

2
Coord. number: average number of neighbours per parti
le 
al
ulated as NC = 2nc/np.

3
Mesh porosity: the 
omplementary of the volume fra
tion of parti
les in the mesh over the

geometri
 volume.
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The results are quite satisfa
tory sin
e the main goal here was to obtain a method to

weight the area assigned to the 
onta
ts in a way that the real geometry was respe
ted.

It 
an be stated that the Virtual Polyhedron Area Corre
tion method is able to 
or-

re
tly determine the areas of 
onta
t for 2D and 3D 
ases involving homogeneous and

heterogeneous meshes.

5.4.2 Linear elasti
ity assessment

As explained in se
tion 5.1.5, the given expressions for kn and kt are not universal to

irregular meshes even if the area 
orre
tion (se
tion 5.3) is applied. Instead, a 
alibra-

tion pro
edure is needed [46, 63, 128℄.

In order to study the 
apabilities of the presented simple linear model, a parametri


study is performed with a linear 
ombination of the sti�ness parameters:

kn = α · E · Āij

(Ri +Rj + δ0)
, kt = β · G · Āij

(Ri +Rj + δ0)
(5.37)

with α and β varying in the range:

α ∈ [ 1.00, 1.20, 1.50, 1.75, 2.00 ]

β ∈ [ 0.00, 1.00, 2.00, 2 · (1.00 + ν), 3.00 ]
(5.38)

A simple uniaxial 
ompression is applied to ea
h of the 2D meshes presented in �gure

5.17. The linear elasti
ity relations read:

εy =
1

E
σy , εx = − 1

E
νσy (5.39)

Assuming uniform stress and strain in the 
omplete model, the measure for a ma
ro-

s
opi
 Young's modulus output and Poisson's ratio 
an be obtained from the measured

quantities as:

E =
σy

εy
, ν = −εx

εy
(5.40)

The test is performed introdu
ing as input: E = 20MPa and ν = 0.25. The output

ma
ros
opi
 values of E and ν are measured for the di�erent 
ombination of α and β.
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Young's modulus results

(a) Young's modulus (MPa) for mesh 2D-1 (b) Young's modulus (MPa) for mesh 2D-2

(
) Young's modulus (MPa) for mesh 2D-3 (d) Young's modulus (MPa) for mesh 2D-4

(e) Young's modulus (MPa) for mesh 2D-5

Figure 5.20: Parametri
 study of output Young's modulus for di�erent meshes
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Poisson's ratio results

(a) Poisson's ratio for mesh 2D-1 (b) Poisson's ratio for mesh 2D-2

(
) Poisson's ratio for mesh 2D-3 (d) Poisson's ratio for mesh 2D-4

Figure 5.21: Parametri
 study of output Poisson's ratio for di�erent meshes

Results of Poisson's ratio of mesh 2D-5 have not been in
luded sin
e that mesh yields a

0.0 value in any 
ase.
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From the results the following 
an be 
on
luded:

• It seems that the 
orre
t value of the Young's modulus is asymptoti
ally re
overed

when the tangential sti�ness be
omes larger for every mesh. This is a 
onsequen
e

of the 
orre
tion of areas whi
h ensures that the stati
 for
es are well 
al
ulated

in the undeformed system formed by linear springs (weighted by the areas).

• There is a linear 
orrelation between the lo
al α value and the global sti�ness of

the model as it was expe
ted in small deformations.

• The values of kn have no in�uen
e on the output Poisson's ratio.

• Given a mesh and a value of β su
h that the 
orre
t Poisson's ratio measure is

obtained, there exists a value of α in the range of [1.0,∞] whi
h re
overs the


orre
t ma
ros
opi
 behaviour in terms of Young's modulus.

• The output Poisson's ratio 
an result in non feasible values greater than 0.5.

• The meshes with higher heterogeneity of radius yield higher Poisson's ratio. Mesh

2D-2 yielded a ν = 0.94 for β = 0.0.

• The values of Poisson's ratio seem to 
onverge to some value near zero (whi
h 
an

even be slightly negative) when the value of β in
reases.

• The values obtained for β = 1.0 yield a good aproximation of the Poisson's ratio

for all the meshes ex
ept for mesh 2D-5 whi
h obviously yields a null Poisson's

ratio.

Even though the ratio kt/kn has in�uen
e on the output ν, it is 
lear that the range

of values is given by the geometri
al assembly of the parti
les and thus, is totally mesh

dependent. It seems a good strategy to 
hoose a high value of β, or in the limit,

restri
t the tangential displa
ement in the 
onta
ts, in order to re
over the exa
t Young's

modulus value with no need of 
alibration (α = 1.0). This yields to a null or negligible

Poisson's ratio. Then, the desired Poisson's ratio 
ould be re
overed by enfor
ing the

equations of linear elasti
ity in the bonds that are formed arround every parti
le.
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5.4.3 Mesh dependen
y

The mesh dependen
y has been already shown (se
tion 5.4.2) also for the simple 
ase

of linear elasti
ity where, given the same mi
ro parameters (kn and kt), di�erent ma
ro

parameters (E and ν) were measured. Figure 5.22 shows an example of the previous

parametri
 study.

(a) Stress-Strain plot for all 2D meshes (b) Poisson's ratio plot for all 2D meshes

Figure 5.22: Output Young's modulus and Poisson's ratio for the 2D meshes using

α = 1.00 and β = 1.00

In this 
ase the verti
al strain was imposed. The measure of ν is done ma
ros
opi
ally,

tra
king the position of the parti
les with respe
t to its initial position. The measure of

stress, is done by evaluating the for
es that the top and bottom parti
les re
eive.

5.4.4 Convergen
e

In the arti
le by Sfer et al. [112℄ experimental 
urves for a UCS test on 
on
rete spe
-

imens are reported. Oñate et al. [96℄ have reprodu
ed the results using the DEMpa
k

model. This is the example 
hosen to analyse the 
onvergen
e of the 
ohesive model

presented. The parameters of the simulation are detailed in se
tion 5.5.

The 
onvergen
e analysis will be done from three perspe
tives: Number of elements,

time step, and quasi-stati
ity.
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Convergen
e in the number of elements

In the introdu
tion, it has been dis
ussed on whether the DEM is or not a dis
retization

method. A property of a FE dis
retization is its 
onvergen
e in the number of elements.

A similar analysis is performed here with DEs to draw 
on
lusions on that aspe
t. The

following meshes are used:

Table 5.4: Meshes used in the 
onvergen
e analysis

Mesh 100 250 500 1 k 5 k 13 k 70 k

Num. of elements 107 251 497 1004 4959 13500 71852

Mean Radius (mm) 18.75 14.27 11.50 9.20 5.40 3.86 2.26

Coord. number 7.64 8.32 8.87 9.29 9.63 9.55 10.15

In order to have a fair 
omparison, di�erent time steps have to be used for ea
h mesh

sin
e their stability limits depend on the size of the parti
les. The estimation of the


riti
al time step is based on the highest frequen
y of the system. The dependen
y of

the frequen
y on the size of the parti
le 
an be easily derived for the 
ase of a bond

between two identi
al parti
les:

ωi =

√

ki
mi

=

√

√

√

√

πE · R2
i

2·Ri+δ0

3/4πR3
i · ρ

(5.41)

simplifying for δ0 → 0:

ωi ∝ 1/
√

R2
i ∝ 1/Ri (5.42)

The ratio of time steps relates to the ratio in the number of parti
les in the following

way:

∆t1
∆t2

∝ ω2

ω1

∝ R̂1

R̂2

∝ 3

√

V1

V2

∝ 3

√

N2

N1

(5.43)
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The time step is linearly proportional with the radius of the smaller spheres in the mesh

and therefore inversely proportional to the 
ubi
 root of the number of parti
les in the

mesh. Taking the 13 k mesh as the referen
e one, with a ∆t = 1e − 7, the others were

s
aled a

ordingly.

Figure 5.23: Convergen
e analysis for the number of parti
les in the dis
retization

Although the results seem to 
onverge by in
reasing the number of elements, its monotony

and order of 
onvergen
e for the variables of interest su
h as the yield stress are di�
ult

to determine. The visualization of the results and the 
ra
ks tra
king is obviously better

de�ned for �ner meshes (see �gure 5.31).

Convergen
e in time step

The value for the 
riti
al time step for the referen
e 13 k mesh is of: ∆tcr ≈ 6e−7
. The

following values have been used in the analysis: [1e−8, 5e−8, 1e−7, 5e−7].

The results (�gure 5.24) 
orroborate that a time step slightly lower than the 
riti
al

one (5e − 7) is not enough for the stability of the system. However, the 
al
ulation is

stable for a time step of 1e − 7, whi
h is approximately the value resulting after the

appli
ation of the safety value β = 0.17 (se
tion 2.6.4).
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Figure 5.24: Convergen
e analysis for the time step sele
tion

The solution does 
onverge when the time step is smaller as shown in �gure 5.24.

Convergen
e in quasi-stati
ity

The expli
it formulation of the DEM is naturally 
on
eived to solve dynami
 problems.

However the quasi-stati
 
onditions of the tests 
an also be simulated by imposing

displa
ements and tra
king the resulting for
es. The quasi-stati
 brittle fra
ture of a


on
rete spe
imen subje
t to a uniaxial 
ompressive test reported in Sfer et al. [112℄

have been simulated. The mesh used for this analysis is the 13 k mesh previously used.

A few spe
ial 
onsiderations have to be done:

• The experimental loading velo
ities are of 0.0006mm/s. At this velo
ity the

real experiment takes 20 minutes to rea
h the desired failure deformation around

0.25%. Using the sele
ted stable time step 1e− 7, a number of 1, 25e10 time steps

would be required at that velo
ity whi
h is obviously not feasible and thus, the

velo
ity of the simulation has to be drasti
ally in
remented.

• Extra damping is needed in quasi-stati
 simulations in order to kill the dynami


e�e
ts. In this sense, the restitution 
oe�
ient is set 
lose to zero, e = 0.0015,

killing all the lo
al 
onta
t unbalan
ed for
es.

• The non-vis
ous global damping (se
tion 5.2.2) will be employed to redu
e the



178 DE model for 
ohesive material

total unbalan
ed for
es resulting in every parti
le. A value of α = 0.2 is used in

the analysis.

• The mass of the parti
les 
an be also modi�able sin
e the a

elerations are not an

interesting result in a quasi-stati
 simulation. In a dynami
 analysis however, the

porosity of the mesh should be taken into a

ount and in
rease the mass asso
iated

to the parti
les that 
ompose the simulated body. In this parti
ular analysis the

mass value has not been modi�ed.

The referen
e experimental data in [112℄ 
orresponds to a loading velo
ity of 0.0006mm/s.

The simulated loading velo
ities have been: [0.002, 0.020, 0.100, 0.200, 1.000]m/s. This

parti
ular 
ase has been designed with no damage in the 
onstitutive law in order to


he
k if the model 
an reprodu
e the brittle behaviour.

Figure 5.25: Convergen
e analysis for the loading velo
ity

The results 
learly show that the loading velo
ity has in�uen
e on the results. The

elasti
 part is well 
al
ulated even for the 1.0 m/s 
ase, where the dynami
 e�e
ts

appear in shape of elasti
 waves produ
ed by an ex
essively fast loading. The failure

however, gives higher peak values and higher deformation ranges for the high velo
ity


ases yielding to a du
tile behaviour. On the other hand, the slowest 
ase of 0.002m/s

yields a extremely brittle behaviour mat
hing the laboratory results.
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5.4.5 Stress evaluation and failure 
riteria

The phenomenologi
al approa
h is widely used in the simulation of 
ohesive materi-

als using the DEM. The failure parameters of a given model have to be 
alibrated by

performing di�erent typi�ed tests and tuning the parameters that �t the experimental


urves [128℄. The methods 
onsidered in most of the 
ases however, whi
h are based

on unidimensional failure 
riteria on the 
onta
ts, do not su�
e to represent the real

behaviour of the failure me
hanisms in the 
ontinua.

To show this idea, a simple test has been performed involving a 
ylindri
al 
on
rete

spe
imen dis
retized by 70 k DEM parti
les subje
ted to a hydrostati
 pressure simu-

lating the hydrostati
 load stage prior to a the deviatori
 loading in a triaxial test. A

variable denoted failure 
riterion state (FCS) has been used to indi
ate how 
lose to

failure is a bond under the 
riteria detailed in se
tion 5.2.3. The value is 
al
ulated as:

FCS =















max
(

Fs

F ,
Fnt

Fnt

)

for Un
oupled Mohr-Coulomb without damage law.

max
(

Fs

F , un

uf
n

)

for Un
oupled Mohr-Coulomb with damage law.

1.0 for Broken bonds

(5.44)

(a) Hydrostati
 loading in a spe
iment (b) Failure 
riterion state plot on bonds

Figure 5.26: 3D 
ylindri
al spe
imen meshed with 70 k spheres under the hydrostati


loading stage of a triaxial test
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Figure 5.26(b) shows the values of FCS ranged [0.0, 0.3] plotted in linear elements 
on-

ne
ting the 
entres of the parti
les whi
h simulate the bonds. It 
an be seen that, in

some 
onta
t elements, values near the 30% of the failure 
riterion have been rea
hed.

The results 
orrespond to the end of the hydrostati
 loading of a triaxial test where a


on�nement of 30 MPa has been rea
hed. The fa
t that some 
onta
ts are already 
loser

to the failure 
ontradi
ts the real e�e
t of the 
on�nement whi
h pushes the failure point

further.

The problem is obviously that the 
onta
t only 
aptures the 
on�nement in one di-

re
tion, the normal one. A possible way to improve this is the development of failure


riteria based on the real three-dimensional stress and strain states in the 
ontinuum.

This 
an be a
hieved by averaged measures of strain and stress tensor in the vi
inity of

the parti
les. The de�nition of these average stress and strain tensors is widely dis
ussed

in literature for granular materials and dis
rete media [6, 62℄.

5.5 Pra
ti
al appli
ation in a proje
t

One of the proje
ts 
arried out within the s
ope of this thesis is presented here. Weath-

erford Ltd. 
ompany was interested in numeri
ally reprodu
ing the typi
al tests 
arried

out in a material laboratory with 
on
rete-like spe
imens in order to validate the 
ohe-

sive DE model.

The DEMpa
k model was used to model the behaviour of these materials whi
h 
an

range from brittle to du
tile depending on the 
on�nement 
onditions. After some 
al-

ibration work, the model is able to predi
t the failure and the strain-stress evolution in

di�erent 
ases.

A spe
i�
 user interfa
e spe
ially devised for the numeri
al simulation of laboratory

tests have been developed and used for the proje
t: the Virtual Lab. It is introdu
ed in

se
tion 6.1.4.
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5.5.1 Triaxial and Uniaxial Compressive Tests on 
on
rete spe
-

imens

The experimental tests were 
arried out at the laboratories of the Te
hni
al University

of Catalonia (UPC). Details on testing are given in [112℄. The 
on
rete used in the

experimental study was designed to have a 
hara
teristi
 
ompressive strength of 32.8

MPa at 28 days. Standard 
ylindri
al spe
imens (of 150mm diameter and 300mm

height) were 
ast in metal molds and demolded after 24 h for storage in a fog room.

 

(a) View of the testing devi
e

 

(b) Se

ion of the testing devi
e

Figure 5.27: Display of the triaxial experiments in the laboratory. Taken from: Sfer et

al. [112℄

The triaxial tests were prepared as shown in Figure 5.27, with a 3-mm-thi
k butyl sleeve

pla
ed around the 
ylinder and an impermeable neoprene sleeve �tted over it. Before

pla
ing the sleeves, two pairs of strain gages were glued on the surfa
e of the spe
imen

at mid-height. Steel loading platens were pla
ed at the �at ends of the spe
imen and

the sleeves were tightened over them with metal s
raps to avoid the ingress of oil. The

tests were performed using a servo-hydrauli
 testing ma
hine with a 
ompressive load


apa
ity of 4.5 · 106N and a pressure 
apa
ity of 140 MPa. The axial load from the

testing ma
hine is transmitted to the spe
imen by a piston that passes through the top

of the 
ell.
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Several levels of 
on�ning pressure were used in order to study the brittle-du
tile tran-

sition of the response: 1.5, 4.5, 9.0, 30 and 60 MPa. First, the pres
ribed hydrostati


pressure was applied in the 
ell, and then the axial load was in
reased at a 
onstant

displa
ement rate of 0.0006mm/s.

5.5.2 Des
ription of the material model

The model employed is the DEMpa
k model, des
ribed in se
tion 5.2. Table 5.5 shows

the DEM parameters for the UCS and triaxial tests for 
on�ning pressures of 1.5, 4.5,

9.0, 30.0 and 60.0 MPa.

ρ (kg/m3
) µs µd E0 (GPa) ν σt

f (MPa) τf (MPa) α uf
n/u

l
n uf

t /u
l
t

2500 0.90 0.25 28 0.2 5.0 16.0 1.0 0.2 0.2

LCS1 (MPA) LCS2 (MPa) LCS3 (MPA) YRC1 YRC2 YRC3

20 45 70 3 12 22

Table 5.5: DEM parameters for UCS and triaxial tests on 
ylindri
al 
on
rete samples

for 
on�ning pressures of 1.5, 4.5, 9.0, 30 and 60 MPa

The value of the shear failure stress τ f and the internal fri
tion angle have been es-

timated as τ f = 16 Mpa and φs = 42◦ (µs = 0.9) using the pro
edure des
ribed in

se
tion 5.2.3. The Coulomb fri
tion 
oe�
ient has been estimated from numeri
al tests

as µd = 0.90. The tensile strength is dedu
ed from the �exural test as τ f = 4.5 Mpa

whi
h translates into a value of τ f = 3.2 MPa in the BTS test. This assumption has

been validated numeri
ally.

The parameters denoted LCS are limits in the 
ompressive normal lo
al stress where

the elasti
-plasti
 
urve 
hanges its slope and YRC are the values of the redu
tion of

the normal sti�ness as des
ribed in se
tion 5.2.4. These together with the fa
tors uf
n/u

l
n

and uf
t /u

l
t, de�ning the damage model, have been determined by adjusting the 
urves

to the experimental data in a phenomenologi
al 
hara
terization pro
edure [96, 128℄.
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5.5.3 Simulation pro
edure

The simulation of a triaxial test within the DEM reprodu
es the experiment as follows:

(a) The 
on�ning pressure is applied up to the desired hydrostati
 testing pressure.

(b) A pres
ribed axial motion is applied at the top of the spe
imen until this fails,

or until the axial 
ompressive strain rea
hes a desired amount of strain while the


on�ning pressure is held 
onstant.

The 
on�ning pressure in the numeri
al model is dire
tly applied to the spheres that

lay on the surfa
e of the spe
imen. A normal for
e is applied to ea
h surfa
e parti
le

in the radial dire
tion and verti
al dire
tion respe
tively to the lateral parti
les and the

ones on the top and bottom. The magnitude of the for
e is 
omputed as Fni
= γ p π R2

i

where p is the 
on�ning pressure. The fa
tor γ adjusts the areas in order to ensure that

the total appli
ation area of the pressure mat
hes the total surfa
e of the geometry.

For the Uniaxial Compressive Strength (UCS) and the Brazilian Tensile Strength (BTS),

the pro
ess starts by step (b) with zero 
on�ning pressure. Further details 
an be found

in [96℄.

5.5.4 Comparison of numeri
al and experimental results

Figures 5.28 and 5.29 show the stress-strain 
urves obtained for the Triaxial tests for


on�ning pressures of 1.5, 4.5, 9.0 and 30 MPa while �gures 5.30 and 5.32 show the

results for the Unixaial Compressive Strength (UCS) and the Brazilian Tensile Strength

(BTS) tests using the DEMpa
k model.

The generation of the samples and the set up of the 
onditions was done using the so


alled Virtual Lab module (se
tion 6.1.4) of the DEMpa
k software in a mesh of approx-

imately 13 k spheres for all 
ases ex
ept the BTS whi
h was performed using a slightly

larger mesh of approximatelly 16 k spheri
 parti
les.

The results have been reported in the arti
le by Oñate et al. [96℄ showing good agree-

ment with the experimental values reported in [112℄.
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Triaxial tests

Figure 5.28: Triaxial test on 
on
rete samples with 1.5 MPa, 4.5 MPa and 9.0 MPa


on�ning pressure. Experimental results in [112℄ versus DEM results for 13 k. Taken

from: Oñate et al. [96℄
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Figure 5.29: Triaxial test on 
on
rete samples with 30 MPa and 60 MPa 
on�ning

pressure. Experimental [112℄ versus DEM results for 13 k. Taken from: Oñate et al.

[96℄
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Uniaxial Compressive Strength test

Figure 5.30: Uniaxial Compressive Strength (UCS) test on 
on
rete sample. DEM

results for the 13k mesh in KDEM. Taken from: Oñate et al. [96℄

(a) Horizontal displa
ement before failure (b) Horizontal displa
ement after failure

Figure 5.31: Horizontal displa
ement results of a 
entred se
tion of a 3D 
ylindri
al

spe
imen meshed with 70 k spheres (deformation ×2)
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Brazilian Tensile Strength test

Figure 5.32: Brazilian Tensile Strenght test (BTS) on 
on
rete sample. DEM results for

the 13 k mesh in KDEM. Taken from: Oñate et al. [96℄

(a) Displa
ement results before failure (b) Displa
ement results after failure

(
) FCS results before failure (d) FCS results after failure

Figure 5.33: Horizontal displa
ement of a 
entred se
tion of the spe
imen at the begin-

ning of the loading and after failure in a BTS test (deformation × 10)
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5.6 Cohesive DEM �ow
hart

Figure 5.34: Basi
 �ow
hart for the 
ohesive DEM



Chapter 6
Implementation and examples

6.1 DEMpa
k

DEMpa
k (www.
imne.
om/dem) is a DEM-based software developed within the frame-

work of the open sour
e 
ode Kratos Multiphysi
s (www.
imne.
om/kratos). It 
onsists

of an open-sour
e 
ode under BSD li
ense written in a hybrid Python/C++ language

together with pa
ked GUI's developed for spe
i�
 problems.

The DEMpa
k proje
t started at 2012 with the begging of this thesis and the number

of the DEM 
ode developers has been in
reasing ever sin
e forming now a group of 5


ore people plus 
ontributions from other 
ollaborators. As part of the thesis obje
tives,

all developments presented in this do
ument have been implemented in the DEMpa
k


ode and are available to any user or developer.

6.1.1 Code stru
ture

The DEMpa
k 
ode is integrated in the KratosMultiphysi
s framework (or Kratos) [25℄

whi
h is a platform for the development of multi-dis
iplinary FE-based 
odes. Kratos

provides a 
ommon data stru
ture to all the di�erent appli
ations. In this sense, it

fa
ilitates the 
ombination of appli
ations. In this work the 
oupled DE-FE pro
edure

bene�ted from several developments already implemented in the solid me
hani
s appli-


ation of Kratos. Apart from that, the Kratos 
ore provides built-in utilities 
ommon

in FE-
odes and high performan
e tools to be used in any appli
ation.
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The main s
ript of the DEMpa
k 
ode is written in python language. It reads the input

�les, sets the simulation properties, laun
hes the 
al
ulation and writes the output �les.

It has an interfa
e 
onne
ting to the 
ore fun
tions of the 
ode (whi
h is written in C++)

giving a high �exibility and permitting the performan
e of a lot of analysis and 
ontrol

operations. The �les that 
onstitute the 
ore of the DEM appli
ation are stru
tured in

di�erent modules in the following way:

• Strategies: are the main s
ripts whi
h de�ne the work�ow of the 
al
ulation.

Every problem has its own spe
i�
 strategy: dis
ontinuum DEM, 
oupled DE/FE,


ohesive DEM, 
oupling with �uid, et
.

• Elements: de�ne the parti
le properties and the 
onta
t 
hara
teristi
s, spe
ify

the ne
essary variables to 
onsider and determine how the for
es and torques need

to be 
al
ulated. Some of the existing elements in the 
ode are the basi
 dis
rete

spheri
al element, the 
ohesive spheri
al element, the DE/FE element and other

spe
ial elements for the �uid 
oupling, thermal 
oupling et
.

• Utilities: are the di�erent tools ne
essary in the DEM algorithm su
h as 
onta
t

dete
tion, energy 
al
ulations, 
reation and destru
tion of parti
les in inlet and

outlet regions, geometri
al operations, visualization and post-pro
ess utilities, et
.

• Integration s
hemes: Several expli
it s
hemes are available to integrate the

movement of the parti
les and 
lusters.

• Conta
t 
onstitutive laws: the intera
tion of parti
les is trough spe
i�
 
onta
t

laws whi
h de�ned here su
h as the LS+D, HM+D, et
.

• Conditions: are entities used to apply 
onta
t or other kind of boundary 
ondi-

tions. In 
ase of 
onta
t with FE, the 
onta
t 
onditions are the surfa
e elements

forming part of the FE mesh.

6.1.2 Levels of usability

The DEMpa
k 
ode, as an open-sour
e 
ode 
an be a

essed at di�erent levels depending

of the type of user as des
ribed in the following �gure 6.1:
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Figure 6.1: Usability levels of the DEMpa
k 
ode

All the 
apabilities and developments are integrated in a user-friendly GUI whi
h 
an

be used by engineers to perform a DE or DE-FE 
ombined analysis. An overview of

the interfa
e is found in next se
tion 6.1.3. For spe
ial operations and higher 
ontrol

of the algorithm, the advan
ed user 
an intera
t with the python interfa
e whi
h has

a

ess to most of the fun
tions of the 
ode and requires a very basi
 
oding knowledge.

In a higher level of 
omplexity, developers 
an a

ess to the 
ore of the appli
ation

and modify or extend it as they please. More and more developers join the Kratos


ommunity bringing new developments and 
apabilities to the 
ode. The do
umentation

online (http://kratos-wiki.
imne.up
.edu) and the help from the Kratos 
ommunity in

the forums provide support to the development of the new users' appli
ations.

6.1.3 Combined DEM-FEM user interfa
e

As an output of the developments of the thesis a user interfa
e integrated in the GiD pre

and post-pro
essor has been generated in 
ollaboration with the rest of the developers

forming part of the DEM Team. The so 
alled Solid-DEM interfa
e is an extension of

the basi
 DEM interfa
e of the DEMpa
k software whi
h permits the assignment of all


onditions and properties ne
essary for a basi
 
oupled DE-FE analysis.
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Figure 6.2: Overview of the 
oupled DE-FE user interfa
e of DEMpa
k

The example in �gure 6.2 shows the basi
 menu of the interfa
e whi
h is divided in

the SOLID and DEM part. Regarding the solid part, the material properties and


onstitutive law 
an be de�ned as well as the type of elements needed for the 
al
ulation.

The 
onta
t 
onditions are assigned to the surfa
e where 
onta
t is expe
ted to happen

and 
lassi
 boundary 
onditions 
an also be applied. To the DEM part, the properties

of the material, the 
onta
t law to be used and other boundary 
onditions are applied to

the parti
le meshes. The general options allow the in
lusion of bounding boxes limiting

the domain of the 
al
ulation, the introdu
tion of gravity and use of other advan
ed

features. Simulation parameters su
h as the time step, the integration s
heme, the

neighbour sear
hing frequen
y et
. 
an also be de�ned here. Finally, the sele
tion of

results for the visualization are available for both DEs and FEs.

6.1.4 The Virtual Lab

The Virtual Lab is a wizard based on the GiD pre and post-pro
essor whi
h intera
ts

with the DEMpa
k 
ode through the basi
 DEM user interfa
e of DEMpa
k. It was
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developed by the DEM team of CIMNE in 
ollaboration with the Quante
h 
ompany.

This tool was developed in the 
ontext of a proje
t with Weatherford Ltd. 
ompany

whi
h was interested in performing simulations with several 
ohesive materials using

the DEMpa
k model. Detailed information of this aspe
t 
an be found on the author's

master thesis [109℄.

The wizard automati
ally sets all the options and parameters needed for the simulation

of material tests, it loads prede�ned meshes and automati
ally assigns the material

properties and 
onditions to the mesh elements. It guides the user, step-by-step, through

the preparation of the laboratory tests presented in se
tion 5.5.1. The available tests in

the wizard are the following:

• Uniaxial Compressive Strength Test

• Triaxial Compressive Test

• Hydrostati
 Loading Test

• Oedometri
 Test

• Brazilian Tensile Strength Test

Figure 6.3: Sele
tion of the type of experiment in the wizard



194 Implementation and examples

The de�nition of a new 
ase starts with the sele
tion of the test as shown in �gure 6.3

to later sele
ted a prede�ned mesh and geometry of the spe
imen (�gure 6.4).

(a) Geometry and mesh sele
tion available for the

hydrostati
, triaxial, UCS and Oedometri
 tests

(b) Geometry and mesh sele
tion available for the

Brazilian Tensile Strength test

Figure 6.4: Prede�ned mesh and geometry sele
tion in fun
tion of the test in the wizard

Next, the material properties and the parameters of the DEMpa
k model (se
tion 5.2)

are de�ned (�gure 6.5).

Figure 6.5: De�nition of the material parameters in the wizard
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The 
al
ulation settings su
h as duration of the simulation, loading velo
ity of the

plates, applied pressure (for triaxial and hydrostati
 
ases) and the 
al
ulation time

step are sele
ted in a next step as depi
ted in �gure 6.6. Finally, the user 
an sele
t

whi
h variables are of interest for the post-pro
ess of simulation as shown in �gure 6.7.

Figure 6.6: De�nition of the general settings in the wizard

Figure 6.7: Sele
tion of the output results in the wizard

The last step is to run the simulation sele
ting the parallelization type (�gure 6.8).
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Figure 6.8: Preparation of data and run

The post-pro
ess is automati
ally generated as well as the stress-strain graphs su
h as

the ones presented in se
tion 5.5.4.

6.2 Performan
e

It is of 
apital importan
e for a DEM 
ode to be e�
ient in terms of 
omputational 
ost

sin
e it 
onstitutes a expensive method that usually requires the use of large number of

elements to obtain meaningful results. All the developments have been performed with


on
erns on e�
ien
y and memory storage as well as possibility of parallelization of the

di�erent pro
edures.

6.2.1 Parallelization

A Dis
rete Element Method 
ode without parallelization has a very limited use in pra
-

ti
e. The expli
it DEM performs independently for ea
h parti
le: the neighbouring

sear
h, the for
e 
al
ulation and the integration of motion. The parallelization of these

steps 
an be done in a relatively easy way.

There exist two types of remarkable ar
hite
tures for multipro
essor 
omputing (�g-

ure 6.9), the Shared Memory Ma
hines (SMM) and the Distributed Memory Ma
hines

(DMM). In 
omputer s
ien
e, Distributed Memory refers to a multiple-pro
essor 
om-

puter system in whi
h ea
h pro
essor has its own private memory. Computational tasks


an only operate on lo
al data, and if remote data is required, the 
omputational task

must 
ommuni
ate with one or more remote pro
essors. In 
ontrast, a Shared Memory

multi-pro
essor o�ers a single memory spa
e shared by all pro
essors.
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Figure 6.9: Cluster of Distributed Memory Ma
hines. Taken from: Google Images

OpenMP parallelization

The suitable te
hnique for SMM is Open MP (Open Multipro
essing); it permits par-

allelizing the loops of the pro
ess by using 
ompilation dire
tives so that the loops are

split into di�erent sets that are 
al
ulated in the di�erent CPU of the same 
omputer.

OpenMP runs on a shared memory system so most of the personal 
omputers would

permit parallelizing the 
al
ulation and saving time. The 
ode runs in serial until a

parallelizable loop is found, runs then the loop in parallel and afterwards, reverts ba
k

to serial. In this sense OpenMP works �ne if every unit step of the loop (normally a

loop over the parti
les) is independent from the others and the parts in serial represent

a very small part of the 
omputation. In se
tion 6.2.2 a s
alability test using OMP is

performed.

MPI parallelization

For DMM ar
hite
ture the suitable te
hnology is the MPI (Message Passing Interfa
e);

this would permit running a 
ase, usually with large number of parti
les in a 
omputer


luster where hundreds, thousands or more CPUs intervene in the 
al
ulation. Within

MPI the entire 
ode is laun
hed on ea
h node whi
h would store the data in its own

memory. The transfer of information and the syn
hronization of the 
al
ulation 
an be


ontrolled. It is also possible to 
ombine MPI with OpenMP to get the best of every

te
hnology and adapt to the spe
i�
 ar
hite
ture of ea
h 
luster.
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In the developments of the DEMpa
k 
ode a �rst version of MPI parallelization for the

basi
 dis
ontinuous and for the 
ohesive DEM was a
quired and the results were promis-

ing. There is however, a lot of work 
urrently ongoing on this topi
, also in the topi


of parallelizing via MPI a 
ombined DE-FE problem whi
h gets mu
h more involved in

terms of 
ommuni
ation as the 
ase of only DEs.

The MPI implementation in
ludes not only the 
ommuni
ation between the 
omputing

nodes but also the rebalan
ing of parti
les asso
iated at ea
h node in order to avoid

that a pro
essor has a workload mu
h larger than others in whi
h 
ase the performan
e

de
reases drasti
ally.

(a) Initial disposition of parti
les with the initial

partition

(b) The partitions evolve as the simulation evolve

to keep an optimal balan
ing

Figure 6.10: Parti
les in di�erent pro
essors in a hourglass simulation

Figure 6.10 shows an example where the rebalan
ing is done dynami
ally as the sim-

ulation evolves. The 
olour in ea
h parti
le indi
ates in whi
h pro
essor it is being

handled; it 
an be seen that the parti
les move from one pro
essor to another one while

the simulation evolves in order to minimize the 
ommuni
ation between pro
essors and

keep the workloads balan
ed.
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6.2.2 Heli
al mixer example

In order to evaluate the overall method behaviour, the simulation of a parti
le mixer has

been 
arried out. The model represents a rotatory mixer where 
onta
t o

urs between

DEs and the three di�erent FE entities (fa
ets, edges and verti
es) of the boundary

mesh 
omposed by triangular and quadrilateral elements. Additionally, the simulation

has been used to evaluate the parallelization behaviour.

Des
ription of the simulation

Figure 6.11: Geometry of the heli
al mixer. Distan
es in meters

Table 6.1: Simulation parameters

Material properties Cal
ulation parameters

Radius (m) 0.0035 Rotation vel. (rad/s) [0.0, 0.0, 0.0]

Density (kg/m3
) 1000 Gravity (m/s2) [0.0,−9.81, 0.0]

Fri
tion 
oe�. DE/DE 0.50 Time step (s) 5 · 10−5

Fri
tion 
oe�. DE/FE 0.75 Neighbour sear
h freq. 1

Young's modulus (Pa) 107 Simulation time (s) 20.0

Poisson's ratio 0.2

Rolling fri
tion 
oe�. 0.001

Restitution 
oe�. 0.4
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Fig. 6.11 shows the geometry of the mixer, �gs. 6.12(
) and 6.12(d) show the initial

and �nal arrangement (after 20 se
onds) of the parti
les respe
tively and �nally, �g.

6.12(a) shows the triangles used in the mesh and and 6.12(b) the quadrilaterals. The

simulation is performed with a mesh 
omposed by 29559 DEs, 848 triangular FEs and

1600 quadrilateral FEs. The material properties and simulation parameters used are

des
ribed in table 6.1. Additionally, in this test, some rolling resistan
e moment has

been added to model the parti
le irregularities. The 
onta
t between the DE and the

rigid FE is evaluated by the H2
method. The 
onta
t law used was the HM+D.

(a) Triangular FEs (b) Quadrilateral FEs

(
) DEs initial arrangement (d) Spheres arrangement after 20 s.

Figure 6.12: Mesh used in the horizontal rotatory mixer and simulation results

Code performan
e in serial

The DEMPa
k 
ode was tested in a ma
hine with an Intel Xeon E5-2670. It took 29

hours, 20 minutes and 30 se
onds in serial to run 20 se
onds of simulation whi
h 
om-

prehend 400000 time steps. Some results on the performan
e of the 
ode are presented

in Table 6.2. In this spe
i�
 
ase, whi
h involves approximately 30 k DE and 2.5 k FE,

it 
an be seen that the 
al
ulation e�ort for DE/FE 
onta
t sear
h represents about the

20% of the total CPU time. The results showed that by splitting the Fast Interse
tion

and the H2
Method the 
ode turned to be 5% faster whi
h is a signi�
ant improvement

for this 
ase, where most of the 
onta
ts are DE/DE rather than DE/FE. It 
an be also

seen that the 
ost of the H2
Method is very low (only 1%) when the split is applied.
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Table 6.2: Serial performan
e of the 
ode for the industrial example

Split Fast + H2
Dire
t H2

Method

DE/DE Conta
t Sear
h 53.9% 51.4%

DE/FE Conta
t Sear
h 20.7% 23.9%

- Create Bins and others 4.5% 4.2%

- Fast Interse
tion 15.1% -

- H2
Method 1.2% 19.7%

Total time 105630 s 111041 s

Code performan
e in parallel

Graphs in �g. 6.13 show the 
ode performan
e using an OpenMP parallel 
omputing

strategy. Based on the results it 
an be 
on
luded that, despite being the speedup far

from the ideal linear 
ase, the fa
t that the 
onta
t 
he
k algorithm is totally parallel

helps to the performan
e.
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(b) S
aling fa
tor 
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Figure 6.13: S
alability test results on the heli
al mixer
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6.3 Appli
ation examples

The possible appli
ations of the developments presented in this dissertation are shown

through several a
ademi
al examples.

S
rew 
onveyor

An example of industrial appli
ation of the DE involving large amount of parti
les is

presented here (�gure 6.14). The rigid stru
ture presents non-smooth regions (verti
es

and edges) 
onta
ting with the parti
les.

Figure 6.14: View of the s
rew 
onveyor handling the parti
les

The model has an inlet whi
h inserts parti
les and a bounding box delimiting the

domain after whi
h the parti
les are eliminated, the parti
le while

Membrane elements

The implementation of the 
oupled between the DE and the FE solver is �exible in the

sense that the 
oupling is e�e
tive through the 
ommuni
ation of 
onta
t for
es between

the two domains, from the parti
les to the FE nodes. This 
an be applied to any solid

or stru
tural element present in the 
omputational solid me
hani
s 
ode used, whi
h in

this 
ase is in the Kratos platform. An example of 
ombination of a parti
le DEM with

stru
tural elements su
h as membranes is shown in �gure 6.15.
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Figure 6.15: Sphere impa
ts a membrane

Cluster parti
les with membrane elements

Previously in se
tion 5.5, the triaxial laboratory tests on 
on
rete spe
imens were simu-

lated applying the pressure as an external normal for
e on the surfa
e parti
les. A more

realisti
 approa
h is needed in 
ases where the samples are formed by a non 
ohesive

granular material su
h as the ballast parti
les presented in �gure 6.16. In this 
ase, the

use of a membrane, simulating the real experiment 
onditions, is ne
essary to keep the

sample 
ompa
t and to properly apply the pressure on the parti
les whi
h relo
ate along

the simulation. This example has been run by Irazábal [53℄ with DEMpa
k reprodu
ing

the experimental results in [103℄.

(a) View of the membrane (b) View of the 
lusters

Figure 6.16: Triaxial test on a ballast sample modelled with sphere 
lusters and mem-

brane elements
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Cluster parti
les with solid elements

A stru
ture simulating the tread of a tire is presented in �gure 6.17 whi
h intera
ts

with a stone modelled by a 
luster of spheres. This type of analysis 
ould be 
ondu
ted

to analyse the e�e
t of stones 
at
hing of di�erent tire designs as well as the damage

indu
ed to them.

Figure 6.17: Stone 
at
hing in a tire tread

Impa
t with plasti
ity

One of the possible appli
ation �elds is the simulation of shot peening whi
h is a 
old

working pro
ess that aims to improve fatigue strength of metalli
 parts by bombarding

its surfa
e with small (generally) spheri
al shots. Details in terms of residual stresses

and plasti
 strains are of interest and 
an be studied using a 
oupled DE/FE pro
edure

[43, 90℄. Just serving as a demonstration of 
apabilities, �gure 6.18 shows a metal sheet

whi
h is being shot by parti
les at di�erent dire
tion and velo
ity produ
ing plasti


deformation and lo
al residual stresses in the metal.

Figure 6.18: Visualization of the plasti
 strain in a metal under a shot peening pro
ess



Chapter 7
Con
lusions and outlook

Within this work, a multi-purpose parallel 3D Dis
rete Element Method 
ode has been

developed and implemented in the so 
alled DEMpa
k software to be used by the CIMNE

resear
hers in industrial appli
ations. The theoreti
al developments of the thesis have


overed the topi
s of granular material simulation, 
ohesive material models and the in-

tera
tion of parti
les with rigid and deformable stru
tures. The 
on
lusions from every

aspe
t ta
kled in the dissertation are summarized in the following lines.

Two main 
onta
t laws have been analysed to be used for the DE-DE and DE-FE

intera
tion, the linear spring dashpot model (LS+D) of Cundall and Stra
k [24℄ and

the Hertzian model (HM+D) from Thornton [125℄, adapted from the original by Tsuji

[130℄. These models have been sele
ted after a thorough bibliographi
 revision due to its

popularity and the balan
e between simpli
ity and a

ura
y that they present in both

elasti
 and inelasti
 
ollisions. It has been appointed that the HM+D is the one that

has to be used when the 
onta
t dynami
s are to be well 
aptured while any of the two

models 
an be used as a mere penalty method in other situations where the 
onta
t

details are not of 
apital importan
e and faster 
omputations are required.

The use of expli
it integration methods prior to impli
it ones has been justi�ed for

the dynami
 
hara
ter of the method in the granular material problems that have been

addressed. Several expli
it one-step s
hemes have been tested in di�erent situations

in terms of a

ura
y, e�
ien
y and stability being the Velo
ity Verlet s
heme sele
ted

as the most advantageous one. It remains to be seen under whi
h 
onditions 
an an
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impli
it integration algorithm be advantageous in 
ases of quasi-stati
ity 
al
ulations as

the ones presented in 
hapter 5.

The integration of rotations showed to require higher order integration s
hemes to

a
hieve similar a level of a

ura
y. To do so, a RK-4 s
heme proposed by Munjiza [88℄

has been adapted to quaternions in order to improve its e�
ien
y. By doing so, the


omputational 
ost of the s
heme is drasti
ally redu
ed and the storage of the rotations

is performed with less than half of the memory 
ompared to the original algorithm whi
h

operates with rotation matri
es.

It has been remarked, still in 
hapter 2, that the stability of the DE simulation 
an

not be a
hieved simply by ensuring the expli
it s
heme stability. The use of the 
onta
t

resolution 
on
ept has been suggested.

In 
hapter 3 a new 
onta
t dete
tion algorithm, the Double Hierar
hy Method, re
ently

published by Santasusana and Irazábal [110℄ has been presented. The method has been

designed to be a

urate, robust and e�
ient, pla
ing spe
ial attention to non-smooth


onta
t situations, multi-
onta
t and 
ases where the DEs and FEs sizes di�er 
onsid-

erably or 
ases where the relative indentation between them 
an be signi�
antly high.

This method 
an be used with di�erent types of 
onta
t FEs providing a high level of

a

ura
y in terms of 
onta
t for
e 
ontinuity in inter-element FE transitions and allow-

ing multi-
onta
t s
enarios with high mesh independen
e and low e�ort. It has been

designed to make it easy to implement and adapt to an existing DEM 
ode. In addition,

the algorithm has been 
on
eived to be fully parallelizable, something essential in order

to allow the 
al
ulation of real 
ases with a great amount of dis
rete and �nite elements.

The DE-FE 
onta
t dete
tion is split into two stages: Global Neighbour Sear
h and

Lo
al Conta
t Resolution. Furthermore, the Lo
al Conta
t Resolution level is split into

two phases. The �rst one, the Fast Interse
tion Test, aiming to determine whi
h FE

are in 
onta
t with ea
h DE, dis
ards in a e�
ient manner all the FEs not 
onta
ting

the DE. On
e the FE with 
onta
t are known, the se
ond phase, the Double Hierar
hy,

takes pla
e in order to a

urately 
al
ulate the 
onta
t 
hara
teristi
s and to remove

invalid 
onta
ts.
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The a

ura
y and robustness of the proposed algorithm has been veri�ed by di�erent

ben
hmark tests. An industrial example is also presented to show its 
omputational

e�
ien
y and test its parallel behaviour. Having in mind that in a shared memory

parallelization the performan
e is limited by the amount of serial parts of the 
ode, the

possibility to parallelize an important part of the 
ode, su
h as the 
onta
t dete
tion,

allows the 
omputation speed to s
ale up. The results proved that the split of the Lo
al

Resolution into a Fast Interse
tion and the Double Hierar
hy Method greatly improves

the overall performan
e.

The des
ription of the method has been 
omplemented with its limitations whi
h are

basi
ally in the normal 
onta
t for
e in 
ases involving 
on
ave transitions and in the

tangential for
e when a parti
le slides a
ross di�erent FEs. The errors are quanti�ed

and a solution is given to the 
ase of the tangential for
e. Notwithstanding those limi-

tations, it 
an be 
on
luded that the H2
method presents superiority in several aspe
ts


ompared to the other DE-FE 
onta
t dete
tion algorithms available in the bibliography.

The 
oupling between the DE method and a solid me
hani
s problem has been de-

s
ribed in 
hapter 4. The presented algorithm 
onsists in 
al
ulating separately the two

domains whi
h 
ommuni
ate through the 
onta
t for
es. The dete
tion of 
onta
ts is


arried out by the H2
method and the evaluation of the for
es is done on the "FE side"

by adapting the HM+D law to the 
ase of DE-FE 
onta
t. The key point of dis
ussion

in the 
hapter is the way the for
es are 
ommuni
ated from the DEs to the nodes of

the FEs. A new method is developed whi
h distributes the for
es into all the elements

involved in the 
onta
t weighted by the interse
tion areas of the parti
le and the respe
-

tive FEs. The solution presented for the interse
tion area 
al
ulation is based on the

assumption of a dis
retization of planar triangles with a uniform pressure distribution.

After des
ribing the pro
edure several examples proved its superiority against the popu-

lar dire
t interpolation of for
es. The examples showed how the problems regarding the


ontinuity of for
es are solved with the employment of the proposed Area Distributed

Method (ADM). Further assessment is needed to analyse the error introdu
ed by the

method due to the uniform approximation of the pressure and also the la
k of a

ura
y

introdu
ed by the use of linear triangles to approximate quadrati
 elements. Also the

performan
e of the method should be analysed to give a stronger support to the 
hoi
e

of the proposed simpli�
ations.
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The 
oupling has been devised with the problem of parti
le-stru
ture intera
tion in

mind in whi
h the high frequen
y response given by the impa
ts is a matter of interest.

This and the fa
t that multiple 
onta
ts o

ur along the simulation reinfor
e the use of

a expli
it integration s
heme whi
h adapted perfe
tly with the DEM expli
it s
heme. A

global balan
e of energy of the 
oupled pro
edure is performed proving that the ADM

predi
ts 
orre
tly the 
onta
t without the in
lusion or loss of energy. The idea of using

the balan
e of energy to 
he
k the global stability of the method has been then intro-

du
ed but further developments have to be done in order to design a methodology that


an be useful to that end by taking into a

ount all energy terms in a simulation.

The modelling of 
ohesive materials su
h as ro
k, 
ement or 
on
rete within the DEM

has been put on the frame in 
hapter 5. Basi
 numeri
al analysis 
learly highlighted the

problems that the DEM presents trying to reprodu
e the ma
ros
opi
al measures su
h as

the Young's modulus and Poisson's ratio out of the mi
ro parameters of the model even

in the linear elasti
 regime. It has been 
learly shown how the problem is 
ompletely

mesh dependent. Apart from that, the 
onvergen
e in the number of elements does not

de�ne a 
lear monotonous tenden
y. A 
onsistent partition of the dis
retized domain

using spheres or other simple parti
le shapes requires also some extra operations. An

improvement to the determination of the 
onta
t areas has been proposed using virtual

polyhedra whi
h seems to 
onsistently de�ne the interfa
es in the model in a simple and

e�
ient manner for 2D and 3D 
ases involving homogeneous and heterogeneous meshes.

Even more 
omplex is the modelling of the non-linear behaviour of materials and fra
-

turing. The existing literature is still far from presenting a methodology that properly

predi
ts the behaviour of material failure with meaningful results in the sense that the

tra
king of fra
tures is a

urate to a level whi
h 
an be useful and 
ompetitive in 
om-

parison to 
ontinuum-based methods. Some alternative exists attempting to solve the

problems presented by the basi
 DEM whi
h in
rease the 
omplexity of the method

up to a level whi
h 
an make us re
onsider if the employment of dis
ontinuum-based

method for a 
ontinuum me
hani
s problem is still advantageous against a two-s
ale

model or a 
ontinuum-based method.

The DEMpa
k model has been employed in an industrial proje
t in the predi
tion of
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the behaviour of 
on
rete through several laboratory tests. The method, whi
h is based

on a phenomenologi
al approa
h, is able to predi
t the failure and the strain-stress evo-

lution after a 
alibration pro
edure. The ne
essary next step would be the simulation of

the failure in real appli
ations with stru
tures in order to see whether the �tted model

is 
apable to be extrapolated to real s
enarios.

A great out
ome of the present PhD thesis is the 
ontribution to the DEMpa
k soft-

ware. It 
onstitutes a versatile and 
omplete 
ode whi
h has many 
apabilities and

in
ludes a set of user-friendly GUIs integrated in the GiD pre and post-pro
essor ready

to be applied to industrial problems in a wide range of �elds. Some of the possible appli-


ations have been demonstrated with simple a
ademi
al examples in
luded in 
hapter 6.

The 
ode has been developed with 
on
erns on e�
ien
y and has been fully parallelized

using OMP. The parallelization in MPI for big 
lusters has been implemented only for

the DE domain. Further developments in the 
ode have to 
on
entrate in this dire
tion

in order to earn a fully parallelized 
oupled DE-FE software that 
an be s
aled up for

large simulations.
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Appendix A
Hertz 
onta
t theory for spheres

Basi
 derivation

The 
ase of the normal 
onta
t of two elasti
 bodies with spheri
al surfa
e of radii R1

and R2 was solved by Hertz in 1882 [47℄. The origin of 
oordinates is set at the initial


onta
t point O being the x − y plane the 
ommon tangent plane of the two surfa
es.

The pro�le z for any of the surfa
es in a region at a small distan
e r from the origin of


oordinates 
an be des
ribed by:

z1 =
r2

2R1
, z2 =

r2

2R2
, r << R1, R2 (A.1)

When a for
e F is applied to press the bodies together a 
ir
ular 
onta
t region is pro-

du
ed where the pressure a
ts to deform the original spheri
al surfa
es. The framework

of this theory assumes that this region, 
hara
terized by the radius a, is small 
ompared

to the radii of 
urvature (a << R1, R2). The distan
e between these two surfa
es 
an

be des
ribed as:

δ − uz1 − uz2 =
r2

2Req
, where Req =

(

1

R1
+

1

R2

)−1

(A.2)

where δ is the apparent indentation of the surfa
es at the initial 
onta
t point O and uz

the displa
ement due to lo
al deformation in dire
tion z in points 
lose to O. Hertz pro-

posed a distribution of pressure under the area of 
onta
t that give rise to displa
ements

whi
h satisfy the equation A.2:
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p(r) = p0
√

1− (r/a)2 (A.3)

The solution for the displa
ements using the proposed pressure distribution is:

uzi =
1− ν2

i

Ei

πp0
4a

(2a2 − r2), r ≤ a (A.4)

where p0 is the maximum pressure lo
ated in the initial 
onta
t point O. And the

equivalent Young modulus E∗
is:

E∗ =

(

1− ν2
1

E1

+
1− ν2

2

E2

)−1

(A.5)

The solution of the displa
ements substituted into equation A.2 yield:

πp0
4aE∗ (2a

2 − r2) = δ − (1/2Req)r
2

(A.6)

from whi
h the radius of the 
onta
t 
ir
le 
an be derived:

a =
πp0Req

2E∗ (A.7)

And the apparent indentation of the two spheres:

δ =
πap0
2E∗ (A.8)

The total 
onta
t for
e relates to the pressure by:

F =

∫ a

0

2πr p(r) dx =
2

3
p0πa

2
(A.9)

Therefore, the maximum pressure p0 is 1.5 times the mean pressure in the 
onta
t

region. Other useful relationships are:

a2 = Req δ (A.10)

p0 =
2

π
E∗
√

δ/Req (A.11)
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F =
4

3
E∗√Req δ

3/2
(A.12)

The derivation of expressions for more general 
ases 
an be found in the book by Johnson

[55℄ and also in the book by Timos
henko [126℄.

Collision time in hertzian 
onta
t

Given a normal 
ollision of two spheres i and j with no gravity, the time for whi
h

the spheres remain in 
onta
t 
an be derived from the energy balan
e. Before the


ollision the initial energy 
an be expressed in terms of the initial relative velo
ity v0

and equivalent mass meq:

E0
k =

1

2
meqv

2
0 , where meq =

(

1

m1
+

1

m2

)−1

(A.13)

During the 
onta
t event the kinemati
 energy 
an be expressed as:

Et
k =

1

2
meq δ̇

2, where t ∈ (tc0, tcf) (A.14)

and the elasti
 energy produ
ed by the elasti
 deformation of the spheres 
olliding 
an

be obtained from the external work performed by the total 
onta
t for
e P (equation

A.12) along the relative indentation δ:

Et
e =

∫ δ(t)

0

F (δ) dδ =
8

15
E∗√Reqδ

5/2
(A.15)

Equating the energies:

1

2
meqv

2
0 =

1

2
meq δ̇

2 +
8

15
E∗√Reqδ

5/2
(A.16)

The maximum indentation δ is obtained when the relative velo
ity is zero (δ̇ = 0):

δmax =

(

1

γ

)2/5

v
4/5
0 , where γ =

16

15

E∗√Req

meq
(A.17)

An expression for the relative velo
ity during 
onta
t 
an be found from the previous

equation A.16:
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dδ

dt
=
√

v20 − γ δ5/2 (A.18)

Sin
e the problem is symmetri
, the time of the 
ollision 
an be 
al
ulated as twi
e the

time in whi
h the indentation δ varies from 0 to δmax:

tc = 2

∫ δmax

0

1
√

v20 − γ δ5/2
dδ =

2δmax

v0

∫ 1

0

1√
1− x5/2

dx (A.19a)

tc ≈ 2.94328
δmax

v0
= 2.94328

(

1

v0 γ2

)1/5

(A.19b)

Further information on this topi
 
an be found in [55℄ and [126℄.



Appendix B
Implementation of the Area

Distributed Method

The di�erent aspe
ts of the algorithm whi
h have to be in
luded/modi�ed in the basi


DEM algorithm in order to implement the Area Distributed Method are detailed below.

Extended neighbour sear
h

Figure B.1: Con
ept of extended radius. FE with 
onta
t and masters are highlighted
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A 
ell-based global sear
h algorithm (se
tion 3.2.1) is applied to the DE/FE sear
h us-

ing enlarged bounding boxes on the DEs. Figure B.1 shows an example of a parti
le

and its extended radius Rext > R. In this situation all the FEs present in the �gure

would be determined as FE potential neighbours. In yellow, the FE with 
onta
t that

are determined by the Fast Interse
tion Test (se
tion 3.3) are shown. Additionally, the

two entities with valid 
onta
t are labelled as masters and their 
onta
t points depi
ted.

Extending the sear
h we make sure that, during several time steps, the valid entities

to 
onsider will be in
luded in the FE potential neighbours list and therefore, there is

no need to perform the 
omplete sear
h every time step. Instead, the lo
al resolution

applies at every time step only for the stored FE potential neighbours. This way the


ontinuity of tangential for
es in non-smooth transitions 
an be ensured by employing

the strategy des
ribed in se
tion 3.5.2.

Determination of Masters and Slaves

First, the Fast Interse
tion is applied as usual to the FE potential neighbours to obtain

the FE with 
onta
t. This has to be done every time step. Figure B.2 shows an example

where the FE with 
onta
t have been highlighted with blue and pink 
olour.

Figure B.2: Conta
t with multiple elements from two hierar
hy groups.
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Now the slaves and masters have to be determined. This is done by the H2
elimination

pro
edure: whenever the Distan
e Hierar
hy (se
tion 3.4.2) determines that a given el-

ement ea has hierar
hy over an element eb, the se
ond be
omes a slave to the �rst. This

has to be done for all pairs of neighbours determining, as usual, whi
h are the entities

with valid 
onta
t (hereafter 
alled masters) and whi
h are the slaves to every master.

Ea
h of the 
olours in Figure B.2 indi
ate a groups of masters and the 
orresponding

slaves in the example. A table similar to the following one is obtained:

Masters em Slaves es,m

e1 [e1, e2, e3℄

e6 [e4, e5, e6, e7℄

Table B.1: Correlation of masters and slaves determined by the H2 elimination pro
e-

dure

The areas of every element Ap
e and their 
entroids x̄

p
e are determined using simple

geometry operations (des
ribed in Appendix C). The total area for every master is

determined by the sum of the areas of every slave belonging to that master. Am =
∑

s A
p
es,m. The total area of 
onta
t of the parti
le is the sum of all the 
onta
t areas,

or equivalently, the sum of all the masters area: AT =
∑

eA
p
e =

∑

mAm.

For
e evaluation

First of all, the tangential for
e is re
overed from the old one as des
ribed in equation

2.37. The way to determine whi
h is the 
orrespondent 
onta
t for
e in 
ase of multi-


onta
t ensuring 
ontinuity has been des
ribed in se
tion 3.5.2. Next, the Hertz Mindlin


onta
t model 2.5.2 is applied as usual, updating the normal and tangential for
es in

the 
onta
t together with the dissipation terms. Finally, the normal for
es are s
aled in

every master by the total 
onta
t area:

Fm, s
aled
n = Fm

n · Am

AT

(B.1)

If the normal for
es are not s
aled, there is a sudden in
rease of the 
onta
t for
es

when new points of 
onta
t are generated due to the FE deformation (see se
tion 4.3.2).
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Instead, if the total area in 
onta
t is the variable 
ontrolling the magnitude of the for
e,

the transitions be
ome smooth.

DE to FE for
e 
ommuni
ation

On
e the for
es in DE are fully determined, they are 
ommuni
ated to the nodes of the

solid in 
onta
t. Ea
h master 
onta
t for
e is transmitted to its FE slaves.

Figure B.3: Conta
t for
e 
ommuni
ated from one DE to two FEs.

In �gure B.3 a parti
le is depi
ted whi
h has 
onta
t with two �nite elements. Sin
e

the two elements are 
oplanar and the 
onta
t point Pc lies on

e©1
, the H2

method

determines that

e©1
is the only master ; elements

e©2
and

e©1
itself are the slaves of

this system. Therefore, the for
es that are transmitted to ea
h of the elements are

determined as follows: F e1 = A1/(A1+A2) ·F and F e2 = A2/(A1+A2) ·F . The normal

for
es in Fn do not need to be s
aled sin
e the area of the master Am = A1+A2 
oin
ides

with the total area of 
onta
t AT of the parti
le (no other 
onta
ts are present). Now,

the 
ontribution of every element to the nodal for
es are 
al
ulated by interpolation of

the elemental for
es evaluated at the 
entroids x̄
p
e of every interse
tion area:

F e
i = Ni(x̄

p
e)F

ei
(B.2)

Finally, those for
es are nodally assembled yielding the total nodal for
es Fi =
∑

e F
e
i .

This is the 
ase of nodes 2 and 4 in the example, whi
h re
eive the 
ontribution from

the two elements.
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Cir
le-triangle interse
tions

In general, the interse
tion of a sphere and a linear triangle in a 3D spa
e yields to a 2D

geometry 
omposed by 
ir
ular and straight lines. Figure C.1 shows one of the possible

situations.

Figure C.1: Possible interse
tion between sphere and triangle

The basi
 geometri
al expressions developed in se
tion 3.3 will be useful here. Cπ is

the 
entre of the sphere proje
ted onto the plane (review �gure 3.4) and a is the radius

of the interse
tion 
ir
le whi
h is related to the indentation δ as follows: a = R δ being

R the radius of sphere. v
i
are the 
oordinates of the nodes and ei

are the ve
tors joining

the verti
es that de�ne the edges.

The grey area, denoted Ap
e 
orresponds to the parti
le with the element, i.e. the inter-

se
tion of the triangle and the 
ir
le. The total area of the 
ir
le will be denoted A0 and

it is simply 
al
ulated as: A0 = πa2. Note that, in a general 
ase, the real interse
tion
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is smaller than the total 
ir
le area, AT =
∑ne

e=0A
p
e < A0. The areas 
oloured 
yan and

magenta help the de�nition of two types of auxiliary regions that will be useful for the

determination of Ap
e and x̄

p
e:

• Segments: Outer or inner areas of the 
ir
le that are 
ompletely 
ut only by an

edge.

• Spikes: Outer or inner areas of the triangle, 
ut by the 
ir
le, whi
h 
ontain only

one vertex.

With the above de�nitions we 
an say that �gure C.1 
ontains an outer spike on vertex

v
3
and two outer segments, one on edge e

2
and another one on edge e

3
.

In general, the area and 
entroid of any geometry 
omposed by basi
 parts with areas

A1, A2, A3, . . . , Anm
and 
entroids x̄

1, x̄2, x̄3, . . . x̄nm

an be de�ned by:

Ap
e =

m=nm
∑

m=0

Am
(C.1a)

x̄
p
e =

∑m=nm

m=0 x̄
m · Am

Ap
e

(C.1b)

Where the area will be introdu
ed with sign to 
onsider the 
ase of subtra
tion.

Basi
 geometry de�nitions

Cir
le

A
ir
 = π a2 (C.2a)

x̄

ir
 = Cπ (C.2b)

Triangle

Atri = 1/2
∥

∥e1 × e2
∥

∥

(C.3a)

x̄
tri = 1/3

(

v
1 + v

2 + v
3
)

(C.3b)
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Se
tor

Figure C.2: Possible 
ases of se
tor from the interse
tion of a 
ir
le and a triangle

Ase
 =
1

2
a2θ (C.4a)

x̄
se
 = Cπ +

4 a · sin(θ/2)
3 θ

· ne2
(C.4b)

Segment

Aseg = Ase
 ± Atri

(C.5a)

x̄
seg =

x̄
se
 · Ase
 ± x̄

tri · Atri

Aseg

(C.5b)

Spikes

Figure C.3: Spike de�ned from the interse
tion of a 
ir
le and a triangle
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Aspk = Atri(pint

1 ,v2,pint

2 ) + Aseg(pint

1 ,Cπ,p
int

2 ) (C.6a)

x̄
spk =

x̄
tri(pint

1 ,v2,pint

2 ) · Atri(pint

1 ,v2,pint

2 ) + x̄
seg(pint

1 ,Cπ,p
int

2 ) · Aseg(pint

1 ,Cπ,p
int

2 )

Aspk

(C.6b)

Classi�
ation table

Aiming to have an e�
ient way to 
ompute the interse
tions Ap
e and their 
entroids,

a 
lassi�
ation is suggested here whi
h divides the possible 
on�gurations in 8 di�er-

ent 
ases whi
h are easy and fast to identify. The 
lassi�
ation is based on two 
riteria:

Number of verti
es 
ir
ums
ribed in the 
ir
le and number of edges 
rossed by the 
ir
le.

Figure C.4: Possible interse
tion between sphere and triangle
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Ea
h of the 
ase is determined by 
omposition of the di�erent geometri
al elements

involved:

On
e the 
ase is determined by applying simple geometry, a spe
i�
 pro
edure is applied:

(a) Evaluate the full 
ir
le.

(b) Subtra
t the only segment from the 
ir
le.

(
) Subtra
t the two segments from the 
ir
le.

(d) Subtra
t the three segments from the 
ir
le.

(e) Evaluate the only spike.

(f) Substra
t the two spikes from the triangle.

(g) Subtra
t the only spike from the triangle.

(h) Evaluate the full triangle.
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